Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
EMBO J ; 42(10): e112408, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37009655

RESUMO

The molecular mechanisms underlying estrogen receptor (ER)-positive breast carcinogenesis and endocrine therapy resistance remain incompletely understood. Here, we report that circPVT1, a circular RNA generated from the lncRNA PVT1, is highly expressed in ERα-positive breast cancer cell lines and tumor samples and is functionally important in promoting ERα-positive breast tumorigenesis and endocrine therapy resistance. CircPVT1 acts as a competing endogenous RNA (ceRNA) to sponge miR-181a-2-3p, promoting the expression of ESR1 and downstream ERα-target genes and breast cancer cell growth. Furthermore, circPVT1 directly interacts with MAVS protein to disrupt the RIGI-MAVS complex formation, inhibiting type I interferon (IFN) signaling pathway and anti-tumor immunity. Anti-sense oligonucleotide (ASO)-targeting circPVT1 inhibits ERα-positive breast cancer cell and tumor growth, re-sensitizing tamoxifen-resistant ERα-positive breast cancer cells to tamoxifen treatment. Taken together, our data demonstrated that circPVT1 can work through both ceRNA and protein scaffolding mechanisms to promote cancer. Thus, circPVT1 may serve as a diagnostic biomarker and therapeutic target for ERα-positive breast cancer in the clinic.


Assuntos
Neoplasias da Mama , RNA Circular , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , RNA Circular/genética , RNA Circular/metabolismo
2.
Cell Mol Life Sci ; 81(1): 121, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457049

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent gastrointestinal malignancies with high mortality worldwide. Emerging evidence indicates that long noncoding RNAs (lncRNAs) are involved in human cancers, including ESCC. However, the detailed mechanisms of lncRNAs in the regulation of ESCC progression remain incompletely understood. LUESCC was upregulated in ESCC tissues compared with adjacent normal tissues, which was associated with gender, deep invasion, lymph node metastasis, and poor prognosis of ESCC patients. LUESCC was mainly localized in the cytoplasm of ESCC cells. Knockdown of LUESCC inhibited cell proliferation, colony formation, migration, and invasion in vitro and suppressed tumor growth in vivo. Mechanistic investigation indicated that LUESCC functions as a ceRNA by sponging miR-6785-5p to enhance NRSN2 expression, which is critical for the malignant behaviors of ESCC. Furthermore, ASO targeting LUESCC substantially suppressed ESCC both in vitro and in vivo. Collectively, these data demonstrate that LUESCC may exerts its oncogenic role by sponging miR-6785-5p to promote NRSN2 expression in ESCC, providing a potential diagnostic marker and therapeutic target for ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Progressão da Doença , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(34): e2200753119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969736

RESUMO

Jumonji C-domain-containing protein 6 (JMJD6), an iron (Fe2+) and α-ketoglutarate (α-KG)-dependent oxygenase, is expressed at high levels, correlated with poor prognosis, and considered as a therapeutic target in multiple cancer types. However, specific JMJD6 inhibitors that are potent in suppressing tumorigenesis have not been reported so far. We herein report that iJMJD6, a specific small-molecule inhibitor of JMJD6 with favorable physiochemical properties, inhibits the enzymatic activity of JMJD6 protein both in vitro and in cultured cells. iJMJD6 is effective in suppressing cell proliferation, migration, and invasion in multiple types of cancer cells in a JMJD6-dependent manner, while it exhibits minimal toxicity in normal cells. Mechanistically, iJMJD6 represses the expression of oncogenes, including Myc and CCND1, in accordance with JMJD6 function in promoting the transcription of these genes. iJMJD6 exhibits suitable pharmacokinetic properties and suppresses tumor growth in multiple cancer cell line- and patient-derived xenograft models safely. Furthermore, combination therapy with iJMJD6 and BET protein inhibitor (BETi) JQ1 or estrogen receptor antagonist fulvestrant exhibits synergistic effects in suppressing tumor growth. Taken together, we demonstrate that inhibition of JMJD6 enzymatic activity by using iJMJD6 is effective in suppressing oncogene expression and cancer development, providing a therapeutic avenue for treating cancers that are dependent on JMJD6 in the clinic.


Assuntos
Antineoplásicos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Neoplasias , Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica , Humanos , Neoplasias/tratamento farmacológico
4.
Nucleic Acids Res ; 50(18): 10230-10248, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36124682

RESUMO

Estrogen and estrogen receptor alpha (ERα)-induced gene transcription is tightly associated with ERα-positive breast carcinogenesis. ERα-occupied enhancers, particularly super-enhancers, have been suggested to play a vital role in regulating such transcriptional events. However, the landscape of ERα-occupied super-enhancers (ERSEs) as well as key ERα-induced target genes associated with ERSEs remain to be fully characterized. Here, we defined the landscape of ERSEs in ERα-positive breast cancer cell lines, and demonstrated that bromodomain protein BRD4 is a master regulator of the transcriptional activation of ERSEs and cognate ERα target genes. RET, a member of the tyrosine protein kinase family of proteins, was identified to be a key ERα target gene of BRD4-regulated ERSEs, which, in turn, is vital for ERα-induced gene transcriptional activation and malignant phenotypes through activating the RAS/RAF/MEK2/ERK/p90RSK/ERα phosphorylation cascade. Combination therapy with BRD4 and RET inhibitors exhibited additive effects on suppressing ERα-positive breast cancer both in vitro and in vivo, comparable with that of standard endocrine therapy tamoxifen. Furthermore, combination therapy re-sensitized a tamoxifen-resistant ERα-positive breast cancer cell line to tamoxifen treatment. Taken together, our data uncovered the critical role of a super-enhancer-associated positive feedback loop constituting BRD4/ERα-RET-ERα in ERα-positive breast cancer, and suggested that targeting components in this loop would provide a new therapeutic avenue for treating ERα-positive breast cancer in the clinic.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Retroalimentação Fisiológica , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Proteínas Proto-Oncogênicas c-ret/uso terapêutico , Tamoxifeno/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
J Proteome Res ; 22(2): 368-373, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36507870

RESUMO

A tremendous amount of proteomic and phosphoproteomic data has been produced over the years with the development of mass spectrometry techniques, providing us with new opportunities to explore and understand the proteome and phosphoproteome as well as the function of proteins and protein phosphorylation sites. However, a lack of powerful tools that we can utilize to explore these valuable data limits our understanding of the proteome and phosphoproteome, particularly in diseases such as cancer. To address these unmet needs, we established CPPA (Cancer Proteome and Phosphoproteome Atlas), a web tool to mine abnormalities of the proteome and phosphoproteome in cancer based on published data sets. All analysis results are presented in CPPA with a flexible web interface to provide key customization utilities, including general analysis, differential expression profiling, statistical analysis of protein phosphorylation sites, correlation analysis, similarity analysis, survival analysis, pathological stage analysis, etc. CPPA greatly facilitates the process of data mining and therapeutic target discovery by providing a comprehensive analysis of proteomic and phosphoproteomic data in normal and tumor tissues with a simple click, which helps to unlock the precious value of mass spectrometry data by bridging the gap between raw data and experimental biologists. CPPA is currently available at https://cppa.site/cppa.


Assuntos
Neoplasias , Proteoma , Humanos , Proteoma/metabolismo , Proteômica , Mineração de Dados , Espectrometria de Massas , Fosforilação , Fosfoproteínas/metabolismo
6.
Br J Cancer ; 129(12): 1915-1929, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37884683

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a highly lethal malignancy with few therapeutic options. Cyclin­dependent kinase 9 (CDK9), a potential therapeutic target of many cancers, has been recently observed to be upregulated in ccRCC patients. Therefore, we aimed to investigate the therapeutic potential of CDK9 in ccRCC and develop a novel CDK9 inhibitor with low toxicity for ccRCC treatment. METHODS: The expression of CDK9 in ccRCC was checked using the online database and tissue microarray analysis. shRNA-mediated CDK9 knockdown and CDK inhibitor were applied to evaluate the effect of CDK9 on ccRCC. Medicinal chemistry methods were used to develop a new CDK9 inhibitor with drugability. RNA-seq and ChIP-seq experiments were conducted to explore the mechanism of action. MTS, western blotting, and colony formation assays were performed to evaluate the anti-ccRCC effects of CDK9 knockdown and inhibition in vitro. The in vivo anti-tumour efficacy was evaluated in a xenograft model. RESULTS: CDK9 is overexpressed and associated with poor survival in ccRCC. Knockdown or inhibition of CDK9 significantly suppressed ccRCC cells. XPW1 was identified as a new potent and selective CDK9 inhibitor with excellent anti-ccRCC activity and low toxicity. In mechanism, XPW1 transcriptionally inhibited DNA repair programmes in ccRCC cells, resulting in an excellent anti-tumour effect. CDK9 and BRD4 were two highly correlated transcriptional regulators in ccRCC patients, and the BRD4 inhibitor JQ1 enhanced XPW1's anti-ccRCC effects in vitro and in vivo. CONCLUSIONS: This work provides valuable insights into the therapeutic potential of CDK9 in ccRCC. The CDK9 inhibitor XPW1 would be a novel therapeutic agent for targeting ccRCC, alone or in rational combinations.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Proteínas que Contêm Bromodomínio/antagonistas & inibidores , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Proteínas Nucleares/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Mol Ther ; 30(2): 688-702, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34371180

RESUMO

Long non-coding RNAs (lncRNAs) play critical roles in tumorigenesis and progression of colorectal cancer (CRC). However, functions of most lncRNAs in CRC and their molecular mechanisms remain uncharacterized. Here we found that lncRNA ITGB8-AS1 was highly expressed in CRC. Knockdown of ITGB8-AS1 suppressed cell proliferation, colony formation, and tumor growth in CRC, suggesting oncogenic roles of ITGB8-AS1. Transcriptomic analysis followed by KEGG analysis revealed that focal adhesion signaling was the most significantly enriched pathway for genes positively regulated by ITGB8-AS1. Consistently, knockdown of ITGB8-AS1 attenuated the phosphorylation of SRC, ERK, and p38 MAPK. Mechanistically, ITGB8-AS1 could sponge miR-33b-5p and let-7c-5p/let-7d-5p to regulate the expression of integrin family genes ITGA3 and ITGB3, respectively, in the cytosol of cells. Targeting ITGB8-AS1 using antisense oligonucleotide (ASO) markedly reduced cell proliferation and tumor growth in CRC, indicating the therapeutic potential of ITGB8-AS1 in CRC. Furthermore, ITGB8-AS1 was easily detected in plasma of CRC patients, which was positively correlated with differentiation and TNM stage, as well as plasma levels of ITGA3 and ITGB3. In conclusion, ITGB8-AS1 functions as a competing endogenous RNA (ceRNA) to regulate cell proliferation and tumor growth of CRC via regulating focal adhesion signaling. Targeting ITGB8-AS1 is effective in suppressing CRC cell growth and tumor growth. Elevated plasma levels of ITGB8-AS1 were detected in advanced-stage CRC. Thus, ITGB8-AS1 could serve as a potential therapeutic target and circulating biomarker in CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Adesões Focais/genética , Adesões Focais/metabolismo , Adesões Focais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Cadeias beta de Integrinas , Integrinas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
8.
Mol Cancer ; 21(1): 69, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255921

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a common invasive malignancy worldwide with poor clinical outcomes. Increasing amount of long non-coding RNAs (lncRNAs) have been reported to be involved in cancer development. However, lncRNAs that are functional in ESCC and the underlying molecular mechanisms remain largely unknown. METHODS: Transcriptomic analysis was performed to identify dysregulated lncRNAs in ESCC tissue samples. The high expression of LINC00680 in ESCC was validated by RT-qPCR, and the oncogenic functions of LINC00680 was investigated by cell proliferation, colony formation, migration and invasion assays in ESCC cells in vitro and xenografts derived from ESCC cells in mice. RNA-seq, competitive endogenous RNA (ceRNA) network analysis, and luciferase reporter assays were carried out to identify LINC00680 target genes and the microRNAs (miRNAs) bound to LINC00680. Antisense oligonucleotides (ASOs) were used for in vivo treatment. RESULTS: Transcriptome profiling revealed that a large number of lncRNAs was dysregulated in ESCC tissues. Notably, LINC00680 was highly expressed, and upregulation of LINC00680 was associated with large tumor size, advanced tumor stage, and poor prognosis. Functionally, knockdown of LINC00680 restrained ESCC cell proliferation, colony formation, migration, and invasion in vitro and inhibited tumor growth in vivo. Mechanistically, LINC00680 was found to act as a ceRNA by sponging miR-423-5p to regulate PAK6 (p21-activated kinase 6) expression in ESCC cells. The cell viability and motility inhibition induced by LINC00680 knockdown was significantly reversed upon PAK6 restoration and miR-423-5p inhibition. Furthermore, ASO targeting LINC00680 substantially suppressed ESCC both in vitro and in vivo. CONCLUSIONS: An oncogenic lncRNA, LINC00680, was identified in ESCC, which functions as a ceRNA by sponging miR-423-5p to promote PAK6 expression and ESCC. LINC00680/miR-423-5p/PAK6 axis may serve as promising diagnostic and prognostic biomarkers and therapeutic targets for ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , RNA Longo não Codificante , Quinases Ativadas por p21 , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
9.
Mol Ther ; 29(10): 3011-3026, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34058385

RESUMO

Glioblastoma (GBM) is the deadliest brain malignancy without effective treatments. Here, we reported that epidermal growth factor receptor-targeted chimeric antigen receptor T cells (EGFR CAR-T) were effective in suppressing the growth of GBM cells in vitro and xenografts derived from GBM cell lines and patients in mice. However, mice soon acquired resistance to EGFR CAR-T cell treatment, limiting its potential use in the clinic. To find ways to improve the efficacy of EGFR CAR-T cells, we performed genomics and transcriptomics analysis for GBM cells incubated with EGFR CAR-T cells and found that a large cohort of genes, including immunosuppressive genes, as well as enhancers in vicinity are activated. BRD4, an epigenetic modulator functioning on both promoters and enhancers, was required for the activation of these immunosuppressive genes. Accordingly, inhibition of BRD4 by JQ1 blocked the activation of these immunosuppressive genes. Combination therapy with EGFR CAR-T cells and JQ1 suppressed the growth and metastasis of GBM cells and prolonged survival in mice. We demonstrated that transcriptional modulation by targeting epigenetic regulators could improve the efficacy of immunotherapy including CAR-T, providing a therapeutic avenue for treating GBM in the clinic.


Assuntos
Azepinas/administração & dosagem , Neoplasias Encefálicas/terapia , Proteínas de Ciclo Celular/metabolismo , Receptores ErbB/imunologia , Glioblastoma/terapia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/metabolismo , Fatores de Transcrição/metabolismo , Triazóis/administração & dosagem , Animais , Azepinas/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Epigênese Genética/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Metástase Neoplásica , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Adv Sci (Weinh) ; 11(18): e2309894, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460163

RESUMO

Real-time telemedicine detection can solve the problem of the shortage of public medical resources caused by the coming aging society. However, the development of such an integrated monitoring system is hampered by the need for high-performance sensors and the strict-requirement of long-distance signal transmission and reproduction. Here, a bionic crack-spring fiber sensor (CSFS) inspired by spider leg and cirrus whiskers for stretchable and weavable electronics is reported. Trans-scale conductive percolation networks of multilayer graphene around the surface of outer spring-like Polyethylene terephthalate (PET) fibers and printing Ag enable a high sensitivity of 28475.6 and broad sensing range over 250%. The electromechanical changes in different stretching stages are simulated by Comsol to explain the response mechanism. The CSFS is incorporated into the fabric and realized the human-machine interactions (HMIs) for robot control. Furthermore, the 5G Narrowband Internet of Things (NB-IoT) system is developed for human healthcare data collection, transmission, and reproduction together with the integration of the CSFS, illustrating the huge potential of the approach in human-machine communication interfaces and intelligent telemedicine rehabilitation and diagnosis monitoring.

11.
J Med Chem ; 67(8): 6658-6672, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38569135

RESUMO

BRD4 is associated with a variety of human diseases, including breast cancer. The crucial roles of amino-terminal bromodomains (BDs) of BRD4 in binding with acetylated histones to regulate oncogene expression make them promising drug targets. However, adverse events impede the development of the BD inhibitors. BRD4 adopts an extraterminal (ET) domain, which recruits proteins to drive oncogene expression. We discovered a peptide inhibitor PiET targeting the ET domain to disrupt BRD4/JMJD6 interaction, a protein complex critical in oncogene expression and breast cancer. The cell-permeable form of PiET, TAT-PiET, and PROTAC-modified TAT-PiET, TAT-PiET-PROTAC, potently inhibits the expression of BRD4/JMJD6 target genes and breast cancer cell growth. Combination therapy with TAT-PiET/TAT-PiET-PROTAC and JQ1, iJMJD6, or Fulvestrant exhibits synergistic effects. TAT-PiET or TAT-PiET-PROTAC treatment overcomes endocrine therapy resistance in ERα-positive breast cancer cells. Taken together, we demonstrated that targeting the ET domain is effective in suppressing breast cancer, providing a therapeutic avenue in the clinic.


Assuntos
Antineoplásicos , Neoplasias da Mama , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular , Proliferação de Células , Fatores de Transcrição , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Animais , Proliferação de Células/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Linhagem Celular Tumoral , Camundongos , Domínios Proteicos , Camundongos Nus , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo
12.
Cell Death Discov ; 10(1): 110, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431720

RESUMO

The oncogenic role of circRNA in cancers including esophageal cancer (EC) has been well studied. However, whether and how circRNAs are involved in cancer cell metabolic processes remains largely unknown. Here, we reported that circRNA, circHIPK3, is highly expressed in ESCC cell lines and tissues. Knockdown of circHIPK3 significantly restrained cell proliferation, colony formation, migration, and invasion in vitro and inhibited tumor growth in vivo. Mechanistically, circHIPK3 was found to act as a ceRNA by sponging miR-637 to regulate FASN expression and fatty acid metabolism in ESCC cells. Anti-sense oligonucleotide (ASO) targeting circHIPK3 substantially inhibited ESCC both in vitro and in vivo. Therefore, these results uncover a modulatory axis constituting of circHIPK3/miR-637/FASN may be a potential biomarker and therapeutic target for ESCC in the clinic.

13.
Polymers (Basel) ; 15(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36679136

RESUMO

Modified asphalt with high content SBS is widely used in asphalt pavement due to its excellent high and low temperature performance. However, its anti-aging performance is insufficient. In order to improve the anti-aging performance of SBS modified asphalt, nano-ZnO, nano-TiO2, nano-SiO2 and polyphosphoric acid (PPA) were added to high content (6.5 wt%) linear SBS modified asphalt as anti-aging agents in this study. Moreover, Dynamic Shear Rheometer (DSR), Fluorescence Microscope, and Fourier Transform Infrared Spectroscopy were employed to reveal the mechanism, through the investigation of the rheological and microscopic properties of modified asphalt before and after aging. The results showed that the influence of nanoparticles on the rutting resistance and fatigue resistance of high content SBS modified asphalt is weak, mainly because there is only weak physical interaction between nanoparticles and the SBS modifier, but no obvious chemical reaction. The significant cross-networking structure of high content SBS modified asphalt even has an adverse effect on the anti-aging performance of nano-modifiers. However, PPA obviously makes the cross-linked network structure of SBS modified asphalt more compact, and significantly improves the performance after short-term aging and long-term aging, mainly due to the chemical reaction between PPA and the active groups in SBS modified asphalt.

14.
IEEE Trans Neural Netw Learn Syst ; 34(8): 5064-5075, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34874869

RESUMO

Data augmentation has been observed playing a crucial role in achieving better generalization in many machine learning tasks, especially in unsupervised domain adaptation (DA). It is particularly effective on visual object recognition tasks as images are high-dimensional with an enormous range of variations that can be simulated. Existing data augmentation techniques, however, are not explicitly designed to address the differences between different domains. Expert knowledge about the data is required, as well as manual efforts in finding the optimal parameters. In this article, we propose a novel domain-adaptive augmentation method by making use of a state-of-the-art style transfer method and domain discrepancy measurement. Specifically, we measure the discrepancy between source and target domains, and use it as a guide to augment the original source samples using style transferred source-to-target samples. The proposed domain-adaptive augmentation method is data and model agnostic that can be easily incorporated with state-of-the-art DA algorithms. We show empirically that, by using this domain-adaptive augmentation, we are able to gradually reduce the discrepancy between the source and target samples, and further boost the adaptation performance using different DA algorithms on three popular domain adaption datasets.

15.
Clin Cancer Res ; 29(11): 2095-2109, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36951687

RESUMO

PURPOSE: The oncogenic role of circular RNAs (circRNA) has been well studied in cancers including colorectal cancer. However, tumor-suppressive circRNAs and the mechanism through which they exert their antitumor effects remain largely unknown. We aim to find out the critical tumor-suppressive circRNAs and their possibility to serve as gene therapy targets. EXPERIMENTAL DESIGN: circRNA sequencing, gain-of-function and loss-of-function experiments, and transcriptomic analysis were performed to find tumor-suppressive and antitumor immunity effects of circRERE. Molecular biology experiments were conducted for mechanism exploration. Finally, we conducted adeno-associated virus (AAV) to deliver circRERE (circRERE-AAV) and evaluated circRERE-AAV alone and in combination with anti-PD-1 antibody in C57BL/6J mice bearing subcutaneous MC38 tumors. RESULTS: circRERE is lowly expressed in colorectal cancer. Overexpression of circRERE inhibits the malignant behaviors of colorectal cancer in vitro and in vivo, while knockdown exhibits the opposite effects. The expression of circRERE is regulated by EP300, a histone acetyltransferase downregulated in colorectal cancer as well. Mechanistically, circRERE acts as a competitive endogenous RNA to sponge miR-6837-3p to upregulate MAVS expression, thereby activating type I IFN signaling and promoting antitumor immunity. Delivery of circRERE-AAV elicits significant antitumor effects, and combination treatment with circRERE-AAV and anti-PD-1 antibody exhibits synergistic effects on tumor growth in preclinical models of colorectal cancer. CONCLUSIONS: These results uncover modulatory axis constituting of EP300/circRERE/miR-6837-3p/MAVS and its essential roles in antitumor immunity, and demonstrate that circRERE-AAV might represent a new therapeutic avenue to prime immune responses and boost the effects of immunotherapy in clinic.


Assuntos
Neoplasias Colorretais , MicroRNAs , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Neoplasias Colorretais/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
16.
Adv Sci (Weinh) ; 10(25): e2206663, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37404090

RESUMO

Endocrine therapy is the frontline treatment for estrogen receptor (ER) positive breast cancer patients. However, the primary and acquired resistance to endocrine therapy drugs remain as a major challenge in the clinic. Here, this work identifies an estrogen-induced lncRNA, LINC02568, which is highly expressed in ER-positive breast cancer and functional important in cell growth in vitro and tumorigenesis in vivo as well as endocrine therapy drug resistance. Mechanically, this work demonstrates that LINC02568 regulates estrogen/ERα-induced gene transcriptional activation in trans by stabilizing ESR1 mRNA through sponging miR-1233-5p in the cytoplasm. Meanwhile, LINC02568 contributes to tumor-specific pH homeostasis by regulating carbonic anhydrase CA12 in cis in the nucleus. The dual functions of LINC02568 together contribute to breast cancer cell growth and tumorigenesis as well as endocrine therapy drug resistance. Antisense oligonucleotides (ASO) targeting LINC02568 significantly inhibits ER-positive breast cancer cell growth in vitro and tumorigenesis in vivo. Furthermore, combination treatment with ASO targeting LINC02568 and endocrine therapy drugs or CA12 inhibitor U-104 exhibits synergistic effects on tumor growth. Taken together, the findings reveal the dual mechanisms of LINC02568 in regulating ERα signaling and pH homeostasis in ER-positive breast cancer, and indicated that targeting LINC02568 might represent a potential therapeutic avenue in the clinic.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Receptores de Estrogênio/uso terapêutico , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Estrogênios/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Carcinogênese
17.
Dev Cell ; 58(9): 760-778.e6, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37054705

RESUMO

The STING-mediated type I interferon (IFN) signaling pathway has been shown to play critical roles in antitumor immunity. Here, we demonstrate that an endoplasmic reticulum (ER)-localized JmjC domain-containing protein, JMJD8, inhibits STING-induced type I IFN responses to promote immune evasion and breast tumorigenesis. Mechanistically, JMJD8 competes with TBK1 for binding with STING, blocking STING-TBK1 complex formation and restricting type I IFN and IFN-stimulated gene (ISG) expression as well as immune cell infiltration. JMJD8 knockdown improves the efficacy of chemotherapy and immune checkpoint therapy in treating both human and mouse breast cancer cell-derived implanted tumors. The clinical relevance is highlighted in that JMJD8 is highly expressed in human breast tumor samples, and its expression is inversely correlated with that of type I IFN and ISGs as well as immune cell infiltration. Overall, our study found that JMJD8 regulates type I IFN responses, and targeting JMJD8 triggers antitumor immunity.


Assuntos
Neoplasias da Mama , Evasão da Resposta Imune , Animais , Feminino , Humanos , Camundongos , Retículo Endoplasmático/metabolismo , Imunidade Inata , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transdução de Sinais/genética
18.
Cell Rep ; 42(11): 113385, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37938975

RESUMO

PRMT1 plays a vital role in breast tumorigenesis; however, the underlying molecular mechanisms remain incompletely understood. Herein, we show that PRMT1 plays a critical role in RNA alternative splicing, with a preference for exon inclusion. PRMT1 methylome profiling identifies that PRMT1 methylates the splicing factor SRSF1, which is critical for SRSF1 phosphorylation, SRSF1 binding with RNA, and exon inclusion. In breast tumors, PRMT1 overexpression is associated with increased SRSF1 arginine methylation and aberrant exon inclusion, which are critical for breast cancer cell growth. In addition, we identify a selective PRMT1 inhibitor, iPRMT1, which potently inhibits PRMT1-mediated SRSF1 methylation, exon inclusion, and breast cancer cell growth. Combination treatment with iPRMT1 and inhibitors targeting SRSF1 phosphorylation exhibits an additive effect of suppressing breast cancer cell growth. In conclusion, our study dissects a mechanism underlying PRMT1-mediated RNA alternative splicing. Thus, PRMT1 has great potential as a therapeutic target in breast cancer treatment.


Assuntos
Processamento Alternativo , Neoplasias da Mama , Humanos , Feminino , Metilação , Processamento Alternativo/genética , Transformação Celular Neoplásica/genética , RNA/metabolismo , Neoplasias da Mama/genética , Éxons/genética , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
19.
Cell Mol Immunol ; 20(4): 351-364, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36864189

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced cytokine storm is closely associated with coronavirus disease 2019 (COVID-19) severity and lethality. However, drugs that are effective against inflammation to treat lethal COVID-19 are still urgently needed. Here, we constructed a SARS-CoV-2 spike protein-specific CAR, and human T cells infected with this CAR (SARS-CoV-2-S CAR-T) and stimulated with spike protein mimicked the T-cell responses seen in COVID-19 patients, causing cytokine storm and displaying a distinct memory, exhausted, and regulatory T-cell phenotype. THP1 remarkably augmented cytokine release in SARS-CoV-2-S CAR-T cells when they were in coculture. Based on this "two-cell" (CAR-T and THP1 cells) model, we screened an FDA-approved drug library and found that felodipine, fasudil, imatinib, and caspofungin were effective in suppressing the release of cytokines, which was likely due to their ability to suppress the NF-κB pathway in vitro. Felodipine, fasudil, imatinib, and caspofungin were further demonstrated, although to different extents, to attenuate lethal inflammation, ameliorate severe pneumonia, and prevent mortality in a SARS-CoV-2-infected Syrian hamster model, which were also linked to their suppressive role in inflammation. In summary, we established a SARS-CoV-2-specific CAR-T-cell model that can be utilized as a tool for anti-inflammatory drug screening in a fast and high-throughput manner. The drugs identified herein have great potential for early treatment to prevent COVID-19 patients from cytokine storm-induced lethality in the clinic because they are safe, inexpensive, and easily accessible for immediate use in most countries.


Assuntos
COVID-19 , Receptores de Antígenos Quiméricos , Humanos , SARS-CoV-2/metabolismo , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Caspofungina , Felodipino , Síndrome da Liberação de Citocina/tratamento farmacológico , Inflamação , Citocinas/metabolismo
20.
Bioresour Technol ; 364: 128090, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36243257

RESUMO

The presence of widely used sulfamethoxazole (SMX) in wastewater poses a threat to aquatic organisms and humans. Here, the responses of the emerging microalgal-bacterial granular sludge (MBGS) process in treating SMX-containing wastewater were investigated. The results indicated that 1, 5 and 10 mg/L SMX had little effect on the removals of organics and nutrients after an acclimation period of three to five days. SMX reduced intracellular glycogen content of MBGS, while the production of chlorophyll and extracellular polymeric substances tended to be promoted. Furthermore, the potential mechanisms on how MBGS adapted to SMX were deciphered to be the alterations of microbial community structure and function of MBGS. SMX might be degraded intracellularly into a carbon source for microbial metabolism and the SMX degraders were suspected to be Scenedesmaceae, Rhodocyclaceae and Burkholderiaceae. This study suggests that the MBGS process can handle SMX-containing wastewater, advancing knowledge on MBGS for antibiotics degradation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa