Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 23(6): 7442-62, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25837085

RESUMO

We demonstrate a new technique of coherent pulse stacking (CPS) amplification to overcome limits on achievable pulse energies from optical amplifiers. CPS uses reflecting resonators without active cavity-dumpers to transform a sequence of phase- and amplitude-modulated optical pulses into a single output pulse. Experimental validation with a single reflecting resonator demonstrates a near-theoretical stacked peak-power enhancement factor of ~2.5 with 92% and 97.4% efficiency for amplified nanosecond and femtosecond pulses. We also show theoretically that large numbers of equal-amplitude pulses can be stacked using sequences of multiple reflecting resonators, thus providing a new path for generating very high-energy pulses from ultrashort pulse fiber amplifier systems.

2.
Opt Express ; 22(8): 9206-19, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24787810

RESUMO

In this paper, we report an advance in increasing core size of effective single-mode chirally-coupled-core (CCC) Ge-doped and Yb-doped double-clad fibers into 55 µm to 60 µm range, and experimentally demonstrate their robust single-mode performance. Theoretical and numerical description of CCC fibers structures with multiple side cores and polygon-shaped central core is consistent with experimental results. Detailed experimental characterization of 55 µm-core CCC fibers based on spatially and spectrally resolved broadband measurements (S(2) technique) shows that modal performance of these large core fibers well exceeds that of standard 20 µm core step-index large mode area fibers.

3.
Opt Express ; 19(23): 22575-81, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22109136

RESUMO

Both analytical study and numerical simulations show that the propagation-length independent Stimulated Raman Scattering (SRS) threshold can be achieved by Stokes wave suppression in optical fibers. We propose a specific design based on Chirally-Coupled-Core (CCC) fibers with spectrally-tailored wavelength-selective transmission to suppress the Stokes wave of Raman scattering. Fibers with length-independent nonlinearity threshold could be particularly advantageous for high power lasers and fiber beam delivery for material processing applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa