RESUMO
We systematically study the first- and second-order band topologies, which are tied to the pseudospin and valley degree of freedoms (DOFs), in honeycomb-kagome photonic crystals (HKPCs). We first demonstrate the quantum spin Hall phase as the first-order pseudospin-induced topology in HKPCs by observing the partial pseudospin-momentum locked edge states. By employing the topological crystalline index, we also discover the multiple corner states emerging in the hexagon-shaped supercell as the manifestation of the second-order pseudospin-induced topology in HKPCs. Next, by gapping the Dirac points, a lower band gap associated with the valley DOF emerges, in which the valley-momentum locked edge states are observed as the first-order valley-induced topology. Such HKPCs without inversion symmetry are proved to be Wannier-type second-order topological insulators, which manifested with valley-selective corner states. Additionally, we also discuss the symmetry breaking effect on pseudospin-momentum locked edge states. Our work realizes both pseudospin-induced and valley-induced topologies in a higher-order manner and thus provides more flexibility in manipulating electromagnetic waves, which may find potential applications in topological routings.
RESUMO
The recent advancements in higher-order topology have provided unprecedented opportunities in optical device designs and applications. Here, we propose a new, to the best of our knowledge, method to realize rainbow trapping based on higher-order topological corner modes (HOTCMs), which are constructed by two configurations of breathing kagome photonic crystals with distinct topological phases. Interestingly, the HOTCMs localized at corners with different geometric configurations are found to be frequency dispersive and thus initiate the possible application in realizing rainbow trapping. By designing a polygon structure containing several configurations of corners, we demonstrate that the HOTCMs can be excited with the frequency sequence locked to the corner order (clockwise/anticlockwise direction) in the polygon. The reported HOTCMs provide a new mechanism to realize multiple-frequency trapping, which may find potential applications in future integrated photonics.
RESUMO
Severe acute pancreatitis (SAP) is a severe acute abdominal disease. Recent evidence shows that intestinal homeostasis is essential for the management of acute pancreatitis. Chitosan oligosaccharides (COS) possess antioxidant activity that are effective in treating various inflammatory diseases. In this study we explored the potential therapeutic effects of COS on SAP and underlying mechanisms. Mice were treated with COS (200 mg·kg-1·d-1, po) for 4 weeks, then SAP was induced in the mice by intraperitoneal injection of caerulein. We found that COS administration significantly alleviated the severity of SAP: the serum amylase and lipase levels as well as pancreatic myeloperoxidase activity were significantly reduced. COS administration suppressed the production of proinflammatory cytokines (TNF-α, IL-1ß, CXCL2 and MCP1) in the pancreas and ileums. Moreover, COS administration decreased pancreatic inflammatory infiltration and oxidative stress in SAP mice, accompanied by activated Nrf2/HO-1 and inhibited TLR4/NF-κB and MAPK pathways. We further demonstrated that COS administration restored SAP-associated ileal damage and barrier dysfunction. In addition, gut microbiome analyses revealed that the beneficial effect of COS administration was associated with its ability to improve the pancreatitis-associated gut microbiota dysbiosis; in particular, probiotics Akkermansia were markedly increased, while pathogenic bacteria Escherichia-Shigella and Enterococcus were almost eliminated. The study demonstrates that COS administration remarkably attenuates SAP by reducing oxidative stress and restoring intestinal homeostasis, suggesting that COS might be a promising prebiotic agent for the treatment of SAP.
Assuntos
Quitosana/uso terapêutico , Homeostase/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Oligossacarídeos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Pancreatite/tratamento farmacológico , Doença Aguda , Animais , Apoptose/efeitos dos fármacos , Quitina/análogos & derivados , Quitina/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pancreatite/patologia , Transdução de Sinais/efeitos dos fármacosRESUMO
OBJECTIVE: To investigate the potential therapeutic role of porous SiO2 -coated ultrasmall selenium particles nanospheres (Se@SiO2 nanospheres) pretreatment in acute pancreatitis (AP) and to investigate the related mechanism. METHODS: C57BL/6 mice were randomized to the normal control (CON) group, the AP (induced by cerulein injection) (CAE) group, and AP pretreated with Se@SiO2 nanocomposites at 1 and 2 mg/kg (CAE + 1 or 2 mg/kg Se@SiO2 ) groups, respectively. Serum levels of amylase and lipase, inflammatory cytokines (interleukin [IL]-6, IL-1ß and tumor necrosis factor [TNF]-α), alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and creatinine (Cr) were measured, and histopathology was performed to examine the tissue samples of the pancreas, lungs, kidneys and liver. Immunofluorescence assay of reactive oxygen species (ROS), myeloperoxidase (MPO) and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling were conducted, and levels of MPO, malondialdehyde, superoxide dismutase and glutathione were evaluated. Finally, Western blot analysis was used to evaluate protein expressions of Nrf2, HO-1, NQO1, TLR4, MyD88 and p-p65 in pancreatic tissue. RESULTS: Se@SiO2 nanospheres alleviated pathological damage to the pancreas, and reduced pancreatic enzymes and inflammatory cytokines. Injury to other organs such as the liver, lungs and kidneys was also alleviated, as indicated by decreased ALT, AST, BUN, and Cr levels as well as improved histopathology. Moreover, Se@SiO2 nanospheres reduced oxidative stress, and ultimately inhibited TLR4/ MyD88/p-p65 pathway and increased the protein expressions of NQO1, Nrf2, and HO-1. CONCLUSION: Se@SiO2 nanospheres may alleviate AP by relieving oxidative stress and targeting the TLR4/Myd88/p-p65 and NQO1/Nrf2/HO-1 pathways.
Assuntos
Ceruletídeo , Nanosferas , Pancreatite , Selênio , Doença Aguda , Animais , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Estresse Oxidativo , PorosidadeRESUMO
An energy harvester based on a round acoustic fence (RAF) has been proposed and studied. The RAF is composed of cylindrical stubs stuck in a circular array on a thin metal plate, which can confine the acoustic energy efficiently. By removing one stub and thus opening a small gap in the RAF, acoustic leakage with larger intensity can be produced at the gap opening. With the vibration source surrounded by the RAF, the energy harvesting at the gap opening has a wide bandwidth and is insensitive to the position of the vibration source. The results may have potential applications in harvesting the energy of various vibration sources in solid structure.
RESUMO
The use of a piezoelectric ring as transformer is reported and studied in this paper. By using a concentric electrode pattern, a ring-shaped transformer can be designed to operate at its high order extensional modes. Lead zirconate titanate (PZT) ceramic rings with 12.7-mm outer diameter, 5.1-mm inner diameter and 1.2-mm thickness were used to fabricate the prototypes. Three-dimensional (3-D) finite element models are built to study and analyze the vibration characteristics of the piezoelectric transformers (PTs) using higher order modes (>3). The resonant frequencies, mean coupling effect, mode shapes, and other open-circuit characteristics are simulated and compared with experimental measurements. Prototypes of PTs using mode order three and four were fabricated and characterized. Good agreement can be obtained between experimental results and finite element model (FEM) simulations. The dimensions for the PTs using higher order symmetric extensional modes are optimized by FEM. To avoid mode coupling with the thickness mode, the ideal ring thickness has to be less than or equal to 0.6 mm. The ring PT offers advantages of simple structure and small size. It has a good potential in making low cost PT for low-voltage applications.