Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(10): 4803-4817, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35880585

RESUMO

Strains Rhodococcus qingshengii djl-6 and Rhodococcus jialingiae djl-6-2 both harbour the typical carbendazim degradation pathway with the hydrolysis of carbendazim to 2-aminobenzimidazole (2-AB) as the initial step. However, the enzymes involved in this process are still unknown. In this study, the previous reported carbendazim hydrolase MheI was found in strain djl-6, but not in strain djl-6-2, then another carbendazim hydrolase CbmA was obtained by a four-step purification strategy from strain djl-6-2. CbmA was classified as a member of the amidase signature superfamily with conserved catalytic site residues Ser157, Ser181, and Lys82, while MheI was classified as a member of the Abhydrolase superfamily with conserved catalytic site residues Ser77 and His224. The catalytic efficiency (kcat /Km ) of MheI (24.0-27.9 µM-1  min-1 ) was 200 times more than that of CbmA (0.032-0.21 µM-1  min-1 ). The mheI gene (plasmid encoded) was highly conserved (>99% identity) in the strains from different bacterial genera and its plasmid encoded flanked by mobile genetic elements. The cmbA gene was highly conserved only in strains of the genus Rhodococcus and it was chromosomally encoded. Overall, the function, diversity, and distribution of carbendazim hydrolases MheI and CbmA will provide insights into the microbial degradation of carbendazim.


Assuntos
Hidrolases , Rhodococcus , Amidoidrolases/metabolismo , Benzimidazóis , Carbamatos/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo
2.
Nat Mater ; 19(2): 239-250, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31659296

RESUMO

A common feature of cancer cells is the alteration of kinases and biochemical signalling pathways enabling transformed growth on soft matrices, whereas cytoskeletal protein alterations are thought to be a secondary issue. However, we report here that cancer cells from different tissues can be toggled between transformed and rigidity-dependent growth states by the absence or presence of mechanosensory modules, respectively. In various cancer lines from different tissues, cells had over tenfold fewer rigidity-sensing contractions compared with normal cells from the same tissues. Restoring normal levels of cytoskeletal proteins, including tropomyosins, restored rigidity sensing and rigidity-dependent growth. Further depletion of other rigidity sensor proteins, including myosin IIA, restored transformed growth and blocked sensing. In addition, restoration of rigidity sensing to cancer cells inhibited tumour formation and changed expression patterns. Thus, the depletion of rigidity-sensing modules through alterations in cytoskeletal protein levels enables cancer cell growth on soft surfaces, which is an enabling factor for cancer progression.


Assuntos
Transformação Celular Neoplásica , Fenômenos Mecânicos , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Proliferação de Células , Proteínas do Citoesqueleto/metabolismo , Fibroblastos/citologia , Fibroblastos/patologia , Humanos , Tropomiosina/metabolismo
3.
Nat Mater ; 16(7): 775-781, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28459445

RESUMO

Epidermal growth factor receptor (EGFR) interacts with integrins during cell spreading and motility, but little is known about the role of EGFR in these mechanosensing processes. Here we show, using two different cell lines, that in serum- and EGF-free conditions, EGFR or HER2 activity increase spreading and rigidity-sensing contractions on rigid, but not soft, substrates. Contractions peak after 15-20 min, but diminish by tenfold after 4 h. Addition of EGF at that point increases spreading and contractions, but this can be blocked by myosin-II inhibition. We further show that EGFR and HER2 are activated through phosphorylation by Src family kinases (SFK). On soft surfaces, neither EGFR inhibition nor EGF stimulation have any effect on cell motility. Thus, EGFR or HER2 can catalyse rigidity sensing after associating with nascent adhesions under rigidity-dependent tension downstream of SFK activity. This has broad implications for the roles of EGFR and HER2 in the absence of EGF both for normal and cancerous growth.


Assuntos
Movimento Celular , Receptores ErbB/metabolismo , Fibroblastos/enzimologia , Mecanotransdução Celular , Receptor ErbB-2/metabolismo , Animais , Fibroblastos/citologia , Camundongos , Quinases da Família src/metabolismo
4.
Nano Lett ; 16(4): 2198-204, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26990380

RESUMO

We herein demonstrate the first 96-well plate platform to screen effects of micro- and nanotopographies on cell growth and proliferation. Existing high-throughput platforms test a limited number of factors and are not fully compatible with multiple types of testing and assays. This platform is compatible with high-throughput liquid handling, high-resolution imaging, and all multiwell plate-based instrumentation. We use the platform to screen for topographies and drug-topography combinations that have short- and long-term effects on T cell activation and proliferation. We coated nanofabricated "trench-grid" surfaces with anti-CD3 and anti-CD28 antibodies to activate T cells and assayed for interleukin 2 (IL-2) cytokine production. IL-2 secretion was enhanced at 200 nm trench width and >2.3 µm grating pitch; however, the secretion was suppressed at 100 nm width and <0.5 µm pitch. The enhancement on 200 nm grid trench was further amplified with the addition of blebbistatin to reduce contractility. The 200 nm grid pattern was found to triple the number of T cells in long-term expansion, a result with direct clinical applicability in adoptive immunotherapy.


Assuntos
Técnicas de Cultura de Células , Ativação Linfocitária , Nanotecnologia , Linfócitos T , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Humanos , Interleucina-2/metabolismo , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Linfócitos T/citologia , Linfócitos T/metabolismo
5.
Mol Microbiol ; 92(5): 1092-112, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24724564

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa uses the type VI secretion system (T6SS) to deliver the muramidase Tse3 into the periplasm of rival bacteria to degrade their peptidoglycan (PG). Concomitantly, P. aeruginosa uses the periplasm-localized immunity protein Tsi3 to prevent potential self-intoxication caused by Tse3, and thus gains an edge over rival bacteria in fierce niche competition. Here, we report the crystal structures of Tse3 and the Tse3-Tsi3 complex. Tse3 contains an annexin repeat-like fold at the N-terminus and a G-type lysozyme fold at the C-terminus. One loop in the N-terminal domain (Loop 12) and one helix (α9) from the C-terminal domain together anchor Tse3 and the Tse3-Tsi3 complex to membrane in a calcium-dependent manner in vitro, and this membrane-binding ability is essential for Tse3's activity. In the C-terminal domain, a Y-shaped groove present on the surface likely serves as the PG binding site. Two calcium-binding motifs are also observed in the groove and these are necessary for Tse3 activity. In the Tse3-Tsi3 structure, three loops of Tsi3 insert into the substrate-binding groove of Tse3, and three calcium ions present at the interface of the complex are indispensable for the formation of the Tse3-Tsi3 complex.


Assuntos
Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/metabolismo , Cálcio/metabolismo , Ligação Proteica
6.
Int J Biol Macromol ; 270(Pt 2): 132161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723810

RESUMO

A novel magnetic polyvinylpyrrolidone/chitosan-Schiff base/Fe2O3 (PVP/CS-SB/Fe2O3) adsorbent was prepared by one-pot facile co-precipitation route for adsorption of Pb(II) and Hg(II) ions from aqueous solution. Fourier transform infrared-spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and Brunauer-Emmett-Teller (BET) were used to characterize the synthesized PVP/CS-SB/Fe2O3. The results predicted that the successfully synthesis of magnetic CSSB-PVP@Fe2O3. The effects of important factors such as pH solution, contact time, concentration of metal ions, adsorbent dose and co-existing ions on Pb(II) and Hg(II) adsorption were investigated. The maximum adsorption capacities of Pb(II) and Hg(II) ions at optimal conditions were 120 mg/g and 102.5 mg/g, respectively. The kinetic studies predicted that the adsorption followed the pseudo-second-order (PSO) model as chemisorption using the coordination of active sites of PVP/CS-SB/Fe2O3 with the metal ions and also n-π interactions. Reproducibility results predicted that the excellent regeneration ability after 6 adsorption cycles. According to the results of this work, the PVP/CS-SB/Fe2O3 nanocomposite is promising for Pb(II) and Hg(II) ions adsorption and can be potential as a simple, low-cost, high-efficient adsorbent for decontamination of other heavy metal ions from aqueous solution.


Assuntos
Quitosana , Compostos Férricos , Chumbo , Mercúrio , Nanocompostos , Povidona , Bases de Schiff , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Nanocompostos/química , Adsorção , Bases de Schiff/química , Chumbo/química , Chumbo/isolamento & purificação , Mercúrio/química , Mercúrio/isolamento & purificação , Povidona/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Purificação da Água/métodos , Cinética , Soluções , Íons/química , Água/química , Espectroscopia de Infravermelho com Transformada de Fourier
7.
J Hazard Mater ; 476: 135045, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38944990

RESUMO

Isoprocarb (IPC), a representative monocyclic carbamate insecticide, poses risks of environmental contamination and harm to non-target organisms. However, its degradation mechanism has not been reported. In this study, a newly IPC-degrading strain D-6 was isolated from the genus Rhodococcus, and its degradation characteristics and pathway of IPC were analyzed. A novel hydrolase IpcH, responsible for hydrolyzing IPC to 2-isopropylphenol (IPP), was identified. IpcH exhibited low similarity (< 27 %) with other reported hydrolases, including previously characterized carbamate insecticides hydrolases, indicating its novelty. The Km and kcat values of IpcH towards IPC were 69.99 ± 8.33 µM and 95.96 ± 4.02 s-1, respectively. Also, IpcH exhibited catalytic activity towards various types of carbamate insecticides, including monocyclic carbamates (IPC, fenobucarb and propoxur), bicyclic carbamates (carbaryl and carbofuran), and linear carbamates (oxamyl and aldicarb). The molecular docking and site-directed mutagenesis revealed that His254, His256, His329 and His376 were essential for IpcH activity. Strain D-6 can effectively reduce the toxicity of IPC and IPP towards sensitive organisms through its degradation ability. This study presents the initial report on IPC degradation pathway and molecular mechanism of IPC degradation, and provides a good potential strain for bioremediating IPC and IPP-contaminated environments.

8.
Toxins (Basel) ; 16(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38787081

RESUMO

Herbal medicines are widely used for clinical purposes worldwide. These herbs are susceptible to phytopathogenic fungal invasion during the culturing, harvesting, storage, and processing stages. The threat of fungal and mycotoxin contamination requires the evaluation of the health risks associated with these herbal medicines. In this study, we collected 138 samples of 23 commonly used herbs from 20 regions in China, from which we isolated a total of 200 phytopathogenic fungi. Through morphological observation and ITS sequencing, 173 fungal isolates were identified and classified into 24 genera, of which the predominant genera were Fusarium (27.74%) and Alternaria (20.81%), followed by Epicoccum (11.56%), Nigrospora (7.51%), and Trichocladium (6.84%). Quantitative analysis of the abundance of both Fusarium and Alternaria in herbal medicines via RT-qPCR revealed that the most abundant fungi were found on the herb Taraxacum mongolicum, reaching 300,000 copies/µL for Fusarium and 700 copies/µL for Alternaria. The in vitro mycotoxin productivities of the isolated Fusarium and Alternaria strains were evaluated by using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and it was found that the Fusarium species mainly produced the acetyl forms of deoxynivalenol, while Alternaria species mainly produced altertoxins. These findings revealed widely distributed fungal contamination in herbal medicines and thus raise concerns for the sake of the quality and safety of herbal medicines.


Assuntos
Contaminação de Medicamentos , Fungos , Micotoxinas , China , Fungos/isolamento & purificação , Fungos/genética , Fungos/classificação , Micotoxinas/análise , Plantas Medicinais/microbiologia , Fusarium/isolamento & purificação , Fusarium/genética , Medicamentos de Ervas Chinesas , Alternaria/isolamento & purificação , Alternaria/genética , Espectrometria de Massas em Tandem
9.
Biochem J ; 448(2): 201-11, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22931054

RESUMO

Tse1 (Tse is type VI secretion exported), an effector protein produced by Pseudomonas aeruginosa, is an amidase that hydrolyses the γ-D-glutamyl-DAP (γ-D-glutamyl-L-meso-diaminopimelic acid) linkage of the peptide bridge of peptidoglycan. P. aeruginosa injects Tse1 into the periplasm of recipient cells, degrading their peptidoglycan, thereby helping itself to compete with other bacteria. Meanwhile, to protect itself from injury by Tse1, P. aeruginosa expresses the cognate immunity protein Tsi1 (Tsi is type VI secretion immunity) in its own periplasm to inactivate Tse1. In the present paper, we report the crystal structures of Tse1 and the Tse1-(6-148)-Tsi1-(20-end) complex at 1.4 Å and 1.6 Å (1 Å=0.1 nm) resolutions respectively. The Tse1 structure adopts a classical papain-like α+ß fold. A cysteine-histidine catalytic diad is identified in the reaction centre of Tse1 by structural comparison and mutagenesis studies. Tsi1 binds Tse1 tightly. The HI loop (middle finger tip) from Tsi1 inserts into the large pocket of the Y-shaped groove on the surface of Tse1, and CD, EF, JK and LM loops (thumb, index finger, ring finger and little finger tips) interact with Tse1, thus blocking the binding of enzyme to peptidoglycan. The catalytic and inhibition mechanisms provide new insights into how P. aeruginosa competes with others and protects itself.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Pseudomonas aeruginosa/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Mutagênese Sítio-Dirigida , N-Acetil-Muramil-L-Alanina Amidase/genética , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
10.
J Hazard Mater ; 458: 131924, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379601

RESUMO

Phenazine-1-carboxamide (PCN), a phenazine derivative, can cause toxicity risks to non target organisms. In this study, the Gram-positive bacteria Rhodococcus equi WH99 was found to have the ability to degrade PCN. PzcH, a novel amidase belonging to amidase signature (AS) family, responsible for hydrolyzing PCN to PCA was identified from strain WH99. PzcH shared no similarity with amidase PcnH which can also hydrolyze PCN and belong to the isochorismatase superfamily from Gram-negative bacteria Sphingomonas histidinilytica DS-9. PzcH also showed low similarity (˂ 39%) with other reported amidases. The optimal catalysis temperature and pH of PzcH was 30 °C and 9.0, respectively. The Km and kcat values of PzcH for PCN were 43.52 ± 4.82 µM and 17.028 ± 0.57 s-1, respectively. The molecular docking and point mutation experiment demonstrated that catalytic triad Lys80-Ser155-Ser179 are essential for PzcH to hydrolyze PCN. Strain WH99 can degrade PCN and PCA to reduce their toxicity against the sensitive organisms. This study enhances our understanding of the molecular mechanism of PCN degradation, presents the first report on the key amino acids in PzcH from the Gram-positive bacteria and provides an effective strain in the bioremediation PCN and PCA contaminated environments.


Assuntos
Aminoácidos , Fenazinas , Hidrólise , Simulação de Acoplamento Molecular , Clonagem Molecular
11.
Toxins (Basel) ; 15(12)2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38133192

RESUMO

Zearalenone (ZEN), an estrogenic mycotoxin, is one of the prevalent contaminants found in food and feed, posing risks to human and animal health. In this study, we isolated a ZEN-degrading strain from soil and identified it as Rhodococcus erythropolis HQ. Analysis of degradation products clarified the mechanism by which R. erythropolis HQ degrades ZEN. The gene zenR responsible for degrading ZEN was identified from strain HQ, in which zenR is the key gene for R. erythropolis HQ to degrade ZEN, and its expression product is a hydrolase named ZenR. ZenR shared 58% sequence identity with the hydrolase ZenH from Aeromicrobium sp. HA, but their enzymatic properties were significantly different. ZenR exhibited maximal enzymatic activity at pH 8.0-9.0 and 55 °C, with a Michaelis constant of 21.14 µM, and its enzymatic activity is 2.8 times that of ZenH. The catalytic triad was identified as S132-D157-H307 via molecular docking and site-directed mutagenesis. Furthermore, the fermentation broth of recombinant Bacillus containing ZenR can be effectively applied to liquefied corn samples, with the residual amount of ZEN decreased to 0.21 µg/g, resulting in a remarkable ZEN removal rate of 93%. Thus, ZenR may serve as a new template for the modification of ZEN hydrolases and a new resource for the industrial application of biological detoxification. Consequently, ZenR could potentially be regarded as a novel blueprint for modifying ZEN hydrolases and as a fresh resource for the industrial implementation of biological detoxification.


Assuntos
Micotoxinas , Zearalenona , Animais , Humanos , Zearalenona/metabolismo , Hidrolases/química , Simulação de Acoplamento Molecular
12.
J Agric Food Chem ; 71(5): 2411-2420, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36701132

RESUMO

Zearalenone (ZEN) is an estrogenic mycotoxin most frequently found in cereals that can cause reproductive disorders in livestock and pose a severe threat to animal husbandry. In this study, we isolated a ZEN-degrading Aeromicrobium strain from soil and found that ZenH, a hydrolase, is responsible for the hydrolysis of ZEN through comparative proteomics and biochemical studies. ZenH exhibited the highest similarity with lactone hydrolase ZHD607 from Phialophora americana at 21.52%. ZenH displayed maximal enzymatic activity at pH 7.0 and 55 °C with a Michaelis constant of 12.64 µM. The catalytic triad of ZenH was identified as S117-D142-H292 by molecular docking and site-directed mutagenesis. ZenH catalyzed the hydrolysis of ZEN to a novel metabolite, (S,E)-4-hydroxy-2-(10-hydroxy-6-oxoundec-1-en-1-yl)-7-oxabicyclo[4.2.0]octa-1,3,5-trien-8-one, which exhibited significantly lower estrogenic toxicity than ZEN. This study illustrates a novel ZEN-degrading enzyme and reveals a new degradation product. Furthermore, the enzyme showed good potential for detoxifying ZEN during food processing.


Assuntos
Micotoxinas , Zearalenona , Animais , Zearalenona/metabolismo , Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Biodegradação Ambiental
13.
Elife ; 112022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35708244

RESUMO

Fast and accurately characterizing animal behaviors is crucial for neuroscience research. Deep learning models are efficiently used in laboratories for behavior analysis. However, it has not been achieved to use an end-to-end unsupervised neural network to extract comprehensive and discriminative features directly from social behavior video frames for annotation and analysis purposes. Here, we report a self-supervised feature extraction (Selfee) convolutional neural network with multiple downstream applications to process video frames of animal behavior in an end-to-end way. Visualization and classification of the extracted features (Meta-representations) validate that Selfee processes animal behaviors in a way similar to human perception. We demonstrate that Meta-representations can be efficiently used to detect anomalous behaviors that are indiscernible to human observation and hint in-depth analysis. Furthermore, time-series analyses of Meta-representations reveal the temporal dynamics of animal behaviors. In conclusion, we present a self-supervised learning approach to extract comprehensive and discriminative features directly from raw video recordings of animal behaviors and demonstrate its potential usage for various downstream applications.


Assuntos
Comportamento Animal , Redes Neurais de Computação , Animais , Humanos , Gravação em Vídeo
14.
Foods ; 11(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35563917

RESUMO

Zearalenone (ZEN) is produced by Fusarium spp. and is widely found in moldy wheat, corn, and other grains. ZEN has a strong toxicity and causes reproductive and immune disorders and estrogenic syndrome in animals and humans. Biodegradation has been demonstrated as an efficient way to control the hazardous effect of ZEN. A promising way to apply biodegradation in feed is to introduce anaerobic ZEN-degrading microorganisms, which can function during the digestion process in animal intestines. The aim of this study was to isolate anaerobic ZEN-degrading bacteria from anaerobic environments. A strain named F39 was isolated from animal intestinal contents and had a ZEN-degradation rate of 87.35% in 48 h to form trace amount of α- and ß-zearalenol. Based on the morphological and physiological properties and phylogenetic analysis of 16S rRNA and rpoB gene sequences, F39 was identified as Clostridium sporogenes. The optimum temperature for the growth of F39 was 37 °C, the optimum pH was 7.0, and the most suitable carbon source was beef extract, while the optimal conditions for the degradation of ZEN were as follows: 35 °C, pH 7.0, and GAM medium. ZEN was degraded by F39 with a high efficiency in the concentration range of 1-15 mg/L. The bioactive factors responsible for ZEN degradation were mainly distributed intracellularly. F39 can degrade most of the ZEN present, but a small amount is broken down into two secondary metabolites, α- and ß-zearalenol, and the toxicity of the degradation products is reduced. With an efficiency of 49%, F39 can more effectively degrade ZEN in wheat-based feedstuffs than in other feedstuff, and the degradation efficiency was pH related. To the best of our knowledge, this is the first report of Clostridium sporogenes F39's ability to maintain the biodegradation potentials.

15.
Opt Express ; 19(26): B983-8, 2011 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-22274130

RESUMO

This paper proposes a novel scheme to reduce energy consumption of digital transceivers with OFDM as the modulation scheme. The energy consumption of transceivers is saved based on two key techniques: 1) adaptively tune the bandwidth and sampling rate of the OFDM signal; 2) selectively power off individual block of parallel modules in the transceiver. Performance analysis illustrate that the newly designed transceiver consumes a significantly less amount of energy as compared to the conventional transceiver.

16.
Artigo em Inglês | MEDLINE | ID: mdl-31647745

RESUMO

B-type fumonisins (FBs) are water-soluble mycotoxins produced by Fusarium species, which are mainly found in maize products and threaten food safety. Toxicological studies and quantitative determinations of fumonisins require large amounts of pure toxins, and their high prices limit progress in FBs research. In this study, we used a macroporous resin column combined with high-speed countercurrent chromatography to separate large quantities of FBs. A fermented rice culture was extracted with 75% methanol. The dynamic adsorption capacity of FBs on XAD-2 resin was 27.5 mg/g resin at 25°C, pH 4.0, and then the FBs were desorbed with 60% methanol. The crude FBs were further purified using a biphasic system consisting of n-heptane/n-butanol/methanol/water (2:4:1:4, v/v/v/v). The method yielded 1.55 g of FB1 and 0.55 g of FB3 with purities of 96.8% and 95.6%, respectively, from 1 kg of rice culture, and the final overall yield of FBs was 74.8%.


Assuntos
Fumonisinas/isolamento & purificação , Resinas Sintéticas/química , Distribuição Contracorrente , Fumonisinas/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
17.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1110-1111: 43-50, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30776614

RESUMO

Zearalenone is one of the most harmful mycotoxins found in grains and there is a large demand for zearalenone substrate for research purposes. A new separation method was developed for the preparative purification of zearalenone from rice culture of Fusarium graminearum by utilizing macroporous resin column combined with high-speed counter-current chromatography. Zearalenone was adsorpted on XAD-2 resin at 25 °C, neutral pH and a feed flow of 4 BV/h, followed by dynamic desorption by 60% ethanol solution. Further purification was achieved by high-speed counter-current chromatography using an optimized biphasic solvent system. A total of 267 mg of zearalenone crystal was obtained in one single run from 4.2 g of crude extract. The purity of the final product was 98.9% and the total recovery yield of zearalenone in this study was 73.9%. This dual-step purification procedure provided an effective way to obtain the costly mycotoxin for both toxicological and detoxification studies on zearalenone.


Assuntos
Distribuição Contracorrente/métodos , Oryza/microbiologia , Poliestirenos/química , Zearalenona/isolamento & purificação , Adsorção , Técnicas de Cultura de Células , Cromatografia Líquida de Alta Pressão/métodos , Etanol , Fusarium/metabolismo , Zearalenona/análise , Zearalenona/química , Zearalenona/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa