Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972428

RESUMO

Electrical synapses are specialized structures that mediate the flow of electrical currents between neurons and have well known roles in synchronizing the activities of neuronal populations, both by mediating the current transfer from more active to less active neurons and by shunting currents from active neurons to their less active neighbors. However, how these positive and negative functions of electrical synapses are coordinated to shape rhythmic synaptic outputs and behavior is not well understood. Here, using a combination of genetics, behavioral analysis, and live calcium imaging in Caenorhabditis elegans, we show that electrical synapses formed by the gap junction protein INX-1/innexin couple the presynaptic terminals of a pair of motor neurons (AVL and DVB) to synchronize their activation in response to a pacemaker signal. Live calcium imaging reveals that inx-1/innexin mutations lead to asynchronous activation of AVL and DVB, due, in part, to loss of AVL-mediated activation of DVB by the pacemaker. In addition, loss of inx-1 leads to the ectopic activation of DVB at inappropriate times during the cycle through the activation of the L-type voltage-gated calcium channel EGL-19. We propose that electrical synapses between AVL and DVB presynaptic terminals function to ensure the precise and robust execution of a specific step in a rhythmic behavior by both synchronizing the activities of presynaptic terminals in response to pacemaker signaling and by inhibiting their activation in between cycles when pacemaker signaling is low.


Assuntos
Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Sinapses Elétricas/metabolismo , Neurônios Motores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Conexinas/genética , Conexinas/metabolismo , Sinapses Elétricas/ultraestrutura , Junções Comunicantes/metabolismo , Junções Comunicantes/ultraestrutura , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Imagem Molecular , Neurônios Motores/citologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Periodicidade , Terminações Pré-Sinápticas/ultraestrutura , Proteína Vermelha Fluorescente
2.
Environ Sci Technol ; 55(19): 12893-12901, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34525797

RESUMO

We report the results of a mass spectrometric study of the effects of atmospherically relevant metal ions on the decomposition of α-hydroxyalkyl-hydroperoxides (α-HHs) derived from ozonolysis of α-terpineol in aqueous solutions. By direct mass spectrometric detection of chloride adducts of α-HHs, we assessed the temporal profiles of α-HHs and other products in the presence of metal ions. In addition, reactions between α-HHs and FeCl2 in the presence of excess DMSO showed that the amount of hydroxyl radicals formed in a mixture of α-terpineol, O3, and FeCl2 was 5.7 ± 0.8% of the amount formed in a mixture of H2O2 and FeCl2. The first-order rate constants for the decay of α-HHs produced by ozonolysis of α-terpineol in the presence of 5 mM acetate buffer at a pH of 5.1 ± 0.1 were determined to be (4.5 ± 0.1) × 10-4 s-1 (no metal ions), (4.7 ± 0.2) × 10-4 s-1 (with 0.05 mM Fe2+), (4.7 ± 0.1) × 10-4 s-1 (with 0.05 mM Zn2+), and (4.8 ± 0.2) × 10-4 s-1 (with 0.05 mM Cu2+). We propose that in acidic aqueous media, the reaction of α-HHs with Fe2+ is outcompeted by H+-catalyzed decomposition of α-HHs, which produces the corresponding aldehydes and H2O2, which can in turn react with Fe2+ to form hydroxyl radicals.


Assuntos
Álcoois , Peróxido de Hidrogênio , Radical Hidroxila , Terpenos , Água
3.
Phys Chem Chem Phys ; 23(8): 4605-4614, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33620039

RESUMO

In the atmosphere, carbonyl oxides known as Criegee intermediates are produced mainly by ozonolysis of volatile organic compounds containing C[double bond, length as m-dash]C double bonds, such as biogenic terpenoids. Criegee intermediates can react with OH-containing species to produce labile organic hydroperoxides (ROOHs) that are taken up into atmospheric condensed phases. Besides water, alcohols are an important reaction partner of Criegee intermediates and can convert them into α-alkoxyalkyl-hydroperoxides (α-AHs), R1R2C(-OOH)(-OR'). Here, we report a study on the aqueous-phase fates of α-AHs derived from ozonolysis of α-terpineol in the presence of methanol, ethanol, 1-propanol, and 2-propanol. The α-terpineol α-AHs and the decomposition products were detected as their chloride adducts by electrospray mass spectrometry as a function of reaction time. Our discovery that the rate of decomposition of α-AHs increased as the pH decreased from 5.9 to 3.8 implied that the decomposition mechanism was catalyzed by H+. The use of isotope solvent experiments revealed that a primary decomposition product of α-AHs in an acidic aqueous solution was a hemiacetal R1R2C(-OH)(-OR') species that was further transformed into other products such as lactols. The proposed H+-catalyzed decomposition of α-AHs, which provides H2O2 and multifunctional species in ambient aerosol particles, may be faster than other degradation processes (e.g., photolysis by solar radiation).

4.
J Phys Chem A ; 124(49): 10288-10295, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33231452

RESUMO

Ozonolysis of unsaturated organic species with water produces α-hydroxyalkyl-hydroperoxides (α-HHs), which are reactive intermediates that lead to the formation of H2O2 and multifunctionalized species in atmospheric condensed phases. Here, we report temperature-dependent rate coefficients (k) for the aqueous-phase decomposition of α-terpineol α-HHs at 283-318 K and terpinen-4-ol α-HHs at 313-328 K. The temporal profiles of α-HH signals, detected as chloride adducts by negative-ion electrospray mass spectrometry, showed single-exponential decay, and the derived first-order k for α-HH decomposition increased as temperature increased, e.g., k(288 K) = (4.7 ± 0.2) × 10-5, k(298 K) = (1.5 ± 0.4) × 10-4, k(308 K) = (3.4 ± 0.9) × 10-4, k(318 K) = (1.0 ± 0.2) × 10-3 s-1 for α-terpineol α-HHs at pH 6.1. Arrhenius plot analysis yielded activation energies of 17.9 ± 0.7 (pH 6.1) and 17.1 ± 0.2 kcal mol-1 (pH 6.2) for the decomposition of α-terpineol and terpinen-4-ol α-HHs, respectively. Activation energies of 18.6 ± 0.2 and 19.2 ± 0.5 kcal mol-1 were also obtained for the decomposition of α-terpineol α-HHs in acidified water at pH 5.3 and 4.5, respectively. Theoretical kinetic and thermodynamic calculations confirmed that both water-catalyzed and proton-catalyzed mechanisms play important roles in the decomposition of these α-HHs. The relatively strong temperature dependence of k suggests that the lifetime of these α-HHs in aqueous phases (e.g., aqueous aerosols, fog, cloud droplets, wet films) is controlled not only by the water content and pH but also by the temperature of these media.

5.
Nat Commun ; 14(1): 4218, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452027

RESUMO

FMRFamides are evolutionarily conserved neuropeptides that play critical roles in behavior, energy balance, and reproduction. Here, we show that FMRFamide signaling from the nervous system is critical for the rhythmic activation of a single cell of previously unknown function, the head mesodermal cell (hmc) in C. elegans. Behavioral, calcium imaging, and genetic studies reveal that release of the FLP-22 neuropeptide from the AVL neuron in response to pacemaker signaling activates hmc every 50 s through an frpr-17 G protein-coupled receptor (GPCR) and a protein kinase A signaling cascade in hmc. hmc activation results in muscle contraction through coupling by gap junctions composed of UNC-9/Innexin. hmc activation is inhibited by the neuronal release of a second FMRFamide-like neuropeptide, FLP-9, which functions through its GPCR, frpr-21, in hmc. This study reveals a function for two opposing FMRFamide signaling pathways in controlling the rhythmic activation of a target cell through volume transmission.


Assuntos
Proteínas de Caenorhabditis elegans , Neuropeptídeos , Animais , FMRFamida/genética , FMRFamida/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Contração Muscular
6.
Environ Sci Atmos ; 2(2): 241-251, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35419522

RESUMO

Organic hydroperoxides (ROOHs) play key roles in the atmosphere as a reactive intermediate species. Due to the low volatility and high hydrophilicity, ROOHs are expected to reside in atmospheric condensed phases such as aerosols, fogs, and cloud droplets. The decomposition mechanisms of ROOHs in the liquid phase are, however, still poorly understood. Here we report a temperature-dependent kinetics and theoretical calculation study of the aqueous-phase decompositions of C12 or C13 α-alkoxyalkyl-hydroperoxides (α-AHs) derived from ozonolysis of α-terpineol in the presence of 1-propanol, 2-propanol, and ethanol. We found that the temporal profiles of α-AH signals, detected as chloride-adducts by negative ion electrospray mass spectrometry, showed single-exponential decay, and the derived first-order rate coefficient k for α-AH decomposition increased as temperature increased, e.g., k(288 K) = (5.3 ± 0.2) × 10-4 s-1, k(298 K) = (1.2 ± 0.3) × 10-3 s-1, k(308 K) = (2.1 ± 1.4) × 10-3 s-1 for C13 α-AHs derived from the reaction of α-terpineol Criegee intermediates with 1-propanol in the solution at pH 4.5. Arrhenius plot analysis yielded an activation energy (E a) of 12.3 ± 0.6 kcal mol-1. E a of 18.7 ± 0.3 and 13.8 ± 0.9 kcal mol-1 were also obtained for the decomposition of α-AHs (at pH 4.5) derived from the reaction of α-terpineol Criegee intermediates with 2-propanol and with ethanol, respectively. Based on the theoretical kinetic and thermodynamic calculations, we propose that a proton-catalyzed mechanism plays a central role in the decomposition of these α-AHs in acidic aqueous organic media, while water molecules may also participate in the decomposition pathways and affect the kinetics. The decomposition of α-AHs could act as a source of H2O2 and multifunctionalized species in atmospheric condensed phases.

7.
Zhongguo Yi Liao Qi Xie Za Zhi ; 30(3): 192-3, 210, 2006 May.
Artigo em Chinês | MEDLINE | ID: mdl-16929777

RESUMO

The application of the reverse engineering and rapid prototyping technologies in the design of respiratory masks is introduced in this paper. Practice indicates that the technologies can reduce the cost and save the time in product developments.


Assuntos
Desenho Assistido por Computador , Máscaras , Terapia Respiratória/instrumentação , Algoritmos , Biologia Computacional/métodos , Simulação por Computador , Desenho de Equipamento , Humanos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Lasers , Terapia Respiratória/métodos , Design de Software
8.
Int J Microbiol ; 2010: 781430, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21253538

RESUMO

Programmed cell death (PCD) systems have been extensively studied for their significant role in a variety of biological processes in eukaryotic organisms. Recently, more and more researches have revealed the existence of similar systems employed by bacteria in response to various environmental stresses. This paper summarized the recent researching advancements in toxin/antitoxin systems located on plasmids or chromosomes and their regulatory roles in bacterial PCD. The most studied yet disputed mazEF system was discussed in depth, and possible roles and status of such a special bacterial death and TA systems were also reviewed from the ecological and evolutionary perspectives.

9.
Indian J Microbiol ; 50(4): 362-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22282601

RESUMO

Biofilm is bacterial population adherent to each other and to surfaces or interfaces, often enclosed by a matrix. Various biomolecules contribute to the establishment of biofilms, yet the process of building a biofilm is still under active investigation. Indole is known as a metabolite of amino acid tryptophan, which, however, has recently been proved to participate in various aspects of bacterial life including virulence induction, cell cycle regulation, acid resistance, and especially, signaling biofilm formation. Moreover, indole is also proposed to be a novel signal involved in quorum sensing, a bacterial cooperation behavior sometimes concerning the biofilm formation. Here the signaling role and molecular mechanism of indole on bacterial biofilm formation are reviewed, as well discussed is its relation to bacterial living adaptivity.

10.
Sci China C Life Sci ; 52(11): 997-1002, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19937196

RESUMO

Many proteins exist as homo-oligomers in living organisms wherein the change of oligomeric status apparently serves as an effective means for modulating their biological activities. We have previously reported that the homo-decameric RbsD from Escherichia coli undergoes stepwise disassembly and non-stepwise reassembly. Here the structural status of the urea-induced RbsD disassembly intermediates was examined, mainly using urea-containing polyacrylamide gel electrophoresis and chemical cross-linking. Such intermediates were found to remain oligomeric while losing their intact secondary structures. Such disassembly intermediates were able to effectively refold when the concentration of the urea denaturant was reduced to a lower level, or to refold/reassemble into the native decamers when urea was completely removed, as detected by non-denaturing polyacrylamide gel electrophoresis. These novel observations strongly suggest that the assembly of oligomeric proteins may occur before the completion of subunit folding.


Assuntos
Proteínas de Escherichia coli/química , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Dicroísmo Circular , Dados de Sequência Molecular , Desnaturação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Ureia/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa