RESUMO
Charge plays a crucial role in the function of molecular and supramolecular systems, but coordination hosts capable of orthogonal charge regulation remain elusive so far. In this study, we report the condition-dependent self-assembly of charge-reversible lanthanide-organic tetra-capped octahedral cages, i.e., [Ln6(H3L)4]6+ and [Ln6L4]6-, from a series of lanthanide ions (Ln3+; Ln = Lu, Yb, Eu) and a tritopic tetradentate acylhydrazone ligand (H6L) featuring multiple deprotonation states and propeller conformations. While direct self-assembly under basic conditions produced a mixture of various ΔxΛ6-x-[Ln6L4]6- (x = 0-6) stereoisomers, racemic Δ6- and Λ6-[Ln6L4]6- could be exclusively obtained from the first self-assembly of Δ6- and Λ6-[Ln6(H3L)4]6+ under neutral conditions followed by post-assembly deprotonation. Rich isomerism on the tetra-capped octahedral cages arising from the coupling between the metal-centered Δ/Λ chirality and the ligand conformations has been discussed based on X-ray single-crystal structures of the C3-symmetric Δ3Λ3-Ln6L4 and T-symmetric Δ6/Λ6-Ln6L4 complexes. Host-guest studies confirmed that positively charged rac-Δ6/Λ6-[Ln6(H3L)4]6+ could bind anionic sulfonates, and negatively charged rac-Δ6/Λ6-[Ln6L4]6- exhibited strong encapsulation ability toward ammonium guests, where acid/base-triggered guest uptake/release could be realized taking advantage of the charge reversibility of the cage. Moreover, photophysical studies revealed visible-light-sensitized and guest-encapsulation-enhanced NIR emissions on the rac-Δ6/Λ6-Yb6L4 cage. This work not only enriches the library of functional lanthanide-organic cages but also provides a promising candidate with charge reversibility for the development of smart supramolecular materials.
RESUMO
Upconversion (UC) is a fascinating anti-Stokes-like optical process with promising applications in diverse fields. However, known UC mechanisms are mainly based on direct energy transfer between metal ions, which constrains the designability and tunability of the structures and properties. Here, we synthesize two types of Ln8L12-type (Ln for lanthanide ion; L for organic ligand L1 or L2R/S) lanthanide-organic complexes with assembly induced excited-multimer states. The Yb8(L2R/S)12 assembly exhibits upconverted multimer green fluorescence under 980 nm excitation through a cooperative sensitization process. Furthermore, upconverted red emission from Eu3+ on the heterometallic (Yb/Eu)8L12 assemblies is also realized via excited-multimer mediated energy relay. Our findings demonstrate a new strategy for designing UC materials, which is crucial for exploiting photofunctions of multicomponent lanthanide-organic complexes.
RESUMO
AIM: Intervertebral disc (IVD) degeneration is a common disease initiated by the degeneration of the nucleus pulposus (NP). The pyroptosis of degenerated NP cells (dNPCs) plays an important role in NP degeneration. The purpose of this study is to identify a feasible solution that can inhibit NP cell pyroptosis to therapy the degeneration of the intervertebral disc. METHODS: Cell viability and proliferation were quantified by Cell Counting Kit-8 assay. The measurement of cellular reactive oxygen species (ROS) was detected by 2,7-Dichlorodi-hydrofluorescein diacetate. The death of cells was analyzed by the Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick-End Labeling (TUNEL) method of fluorescence analysis. The pyroptosis of cells was assessed by flow cytometry analyses. The contents of sulfate glycosaminoglycans were detected by a blyscan assay kit. RESULT: In this study, we determined the effects of retinoic acid (RA) on dNPCs and investigated the underlying mechanism of RA-mediated pyroptosis in dNPCs. We also verified the effects of RA on IVD degeneration in vivo. Our results demonstrated that RA significantly increased the proliferation and the protein expression of sox9, aggrecan, and collagen II of dNPCs. Pyroptosis-related proteins and the pyroptosis rate of dNPCs were significantly decreased by RA. We found that Sirt1-SOD2 signaling was activated, while ROS generation and TXNIP/NLRP3 signaling in dNPCs were inhibited after the addition of RA. Furthermore, RA also recovered the structure of NP and increased the contents of sulfated glycosaminoglycans and collagen in vivo. CONCLUSION: Our study demonstrated that RA could inhibit the pyroptosis and increase the extracellular matrix synthesis function of dNPCs and verified that RA has a protective effect on IVD degeneration.
Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , Núcleo Pulposo/metabolismo , Piroptose , Tretinoína/metabolismo , Tretinoína/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Glicosaminoglicanos/metabolismoRESUMO
We report the syntheses and host-guest chemistry of two interconvertible coordination cages, Pd2L2 and Pd1L1, from a dynamic macrocycle ligand (L) and a cis-blocking (tmen)Pd(NO3)2 (tmen = tetramethylethylenediamine) unit (Pd). The water-soluble macrocyclic L, which can bind various polycyclic aromatic hydrocarbon (PAH) guests in its cis-conformation, was constructed via four pyridinium bonds between two 2,4,6-tri(4-pyridyl)-1,3,5-triazine [TPT] panels and two p-xylene bridges. We selectively formed each cage either by changing the reaction concentration/solvent/temperature or through induced-fit guest encapsulation, while direct assembly of L and Pd resulted in a mixture of Pd2L2 and Pd1L1 in equilibrium. X-ray structures of the free ligand and the host-guest complexes confirmed the induce-fit adaptive changes in the ligand's conformation and the cage's cavity. This work demonstrates a useful strategy for designing multistimuli-responsive supramolecular hosts by coordination self-assembly with macrocyclic ligands featuring rich conformational freedom.
RESUMO
Chiral luminescent lanthanide-organic cages have many potential applications in enantioselective recognition, sensing, and asymmetric catalysis. However, due to the paucity of structures and their limited cavities, host-guest chemistry with lanthanide-organic cages has remained elusive so far. Herein, we report a guest-driven self-assembly and chiral induction approach for the construction of otherwise inaccessible Ln4L4-type (Ln = lanthanide ions, i.e., EuIII, TbIII; L = ligand) tetrahedral hosts. Single crystal analyses on a series of host-guest complexes reveal remarkable guest-adaptive cavity breathing on the tetrahedral cages, reflecting the advantage of the variation tolerance on coordination geometry of the f-elements. Meanwhile, noncovalent confinement of pyrene within the lanthanide cage not only leads to diminishment of its excimer emission but also facilitates guest to host energy transfer, opening up a new sensitization window for the lanthanide luminescence on the cage. Moreover, stereoselective self-assembly of either Λ4- or Δ4- type Eu4L4 cages has been realized via chiral induction with R/S-BINOL or R/S-SPOL templates, as confirmed by NMR, circular dichroism (CD), and circularly polarized luminescence (CPL) with high dissymmetry factors (glum) up to ±0.125.
Assuntos
Elementos da Série dos Lantanídeos , Dicroísmo Circular , Európio/química , Elementos da Série dos Lantanídeos/química , Luminescência , EstereoisomerismoRESUMO
Structurally well-defined discrete d/f heterometallic complexes show diverse application potential in electrooptic and magnetic materials. However, precise control of the component and topology of such heterometallic compounds with fine-tuned photophysical properties is still challenging. Herein, we report the stereocontrolled syntheses of a series of LnIII-PtII heterometallic cages through coordination-driven self-assembly of enantiopure alkynylplatinum-based metalloligands (L1R/S, L2R/S) with lanthanide ions (Ln = EuIII, YbIII, NdIII, LuIII). Taking advantage of the metal-to-ligand charge transfer (MLCT) excited state on the designed alkynylplatinum ligands, the excitation window for the sensitized near-infrared (NIR) luminescence on the YbIII- and NdIII-containing cages can be extended to the visible region (up to 500 nm). Linear temperature-dependent red and NIR emissions observed on the Ln4(L2R/S)6 (LnIII = EuIII and YbIII, respectively) complexes suggest their potential applications as luminescent temperature sensors, with sensitivities of -0.54% (LnIII = EuIII, 77-250 K) and -0.17% (LnIII = YbIII, 77-300 K) per K achieved. This work not only offers a good strategy to prepare new d/f heterometallic supramolecular cages but also paves the way for the design of stimuli-responsive luminescent materials.
RESUMO
We present here the coordination self-assembly of a new heteroleptic (bpyPd)4L1L22 coordination complex (1) from one novel pyridinium-functionalized bis-2,4,6-tris(pyridin-3-yl)-1,3,5-triazine (bis-3-TPT, L1) macrocyclic ligand, two separate 3-TPT (L2) ligands, and four cis-blocking bpyPd(NO3)2 (bpy = 2,2'-bipyridine). While homoleptic self-assemblies with either L1 or L2 gave dynamic mixtures of products, a single thermodynamic heteroleptic complex was obtained driven by the shape complementarity of building blocks. Moreover, the redox-active nature of the heteroleptic assembly facilitates the highly efficient catalytic aerobic photo-oxidation of aromatic secondary alcohols under mild conditions.
RESUMO
Artificial hosts with rich conformational dynamics are attractive to supramolecular chemists due to their adaptive guest-binding properties and enzyme-like catalytic functions. We report here the adaptive self-assembly and host-guest catalysis of a new water-soluble organo-palladium host (Pd2 L2 ) built from a pyridinium-bonded macrocyclic ligand (L) and cis-blocked palladium corners (Pd). While the direct self-assembly of L with Pd gives rise to a dynamic mixture of products, both neutral polyaromatic hydrocarbons and an anionic polyoxometalate cluster (W10 O32 4- ) can template the dominant formation of the Pd2 L2 host. Guest-adaptive conformational changes and induced-fit cavity deformation of the Pd2 L2 host have been clearly observed in the crystal structures. Moreover, the installation of the electron-rich W10 O32 4- cluster within the cationic redox-active host (W10 O32 âPd2 L2 ) facilitates the efficient and selective C-H photooxidation of toluene derivatives to aldehyde products under mild conditions, thus representing an ideal platform for green supramolecular catalysis.
RESUMO
Biological macromolecules always function through a collective behavior of the aggregated constituents, which usually are self-assembled together via noncovalent interactions. Likewise, artificial supramolecular assemblies, whose properties and functions are mainly derived from their primary and secondary structures, may also aggregate into high-order architectures with emergent functions not available on the individual components. Here we report the first example of an insulin-like hexamerization of lanthanide triple helicates toward a 4 nm diameter hexameric capsule via consecutive metal-directed and anion-directed assembly processes. Hierarchical chiral-sorting self-assembly endows hexamers with aggregation-induced stability and emission enhancement. Furthermore, emergent guest-encapsulation function and enantioselectivity toward terpene drugs have been realized in the late-formed central cavity of the hexamers. This study not only provides a feasible strategy for constructing sophisticated and multifunctional lanthanide-organic materials but also sheds some light on the self-assembly processes in nature.
RESUMO
One important feature of enzyme catalysis is the induced-fit conformational change after binding substrates. Herein, we report a biomimetic water-soluble molecular capsule featuring adaptive structural change toward substrate binding, which offers an ideal platform for efficient photocatalysis. The molecular capsule was coordination-assembled from three anthracene-bridged bis-TPT [TPT = 2,4,6-tris(4-pyridyl)-1,3,5-triazine] ligands and six (bpy)Pd(NO3)2 (bpy = 2,2'-bipyridine). Once substrates bind to its hydrophobic cavity, this capsule would undergo quantitative capsule-to-bowl transformation. Visible-light absorption brought about by both the anthracene units and the charge-transfer absorption on the late-formed quintuple π-π stacked host-guest complex efficiently facilitates aerobic photooxidation for the sulfide guests by visible-light irradiation under mild conditions. Desired turnover numbers and product selectivity (sulfoxide over sulfone) have been achieved by the transformable nature of the catalyst and the hydrophilicity of the sulfoxide product. Such a photocatalytic process enabled by an adaptive coordination capsule and substrates as the allosteric effector paves the way for constructing artificial systems to mimic enzyme catalysis.
Assuntos
2,2'-Dipiridil , Biomimética , Processos Fotoquímicos , 2,2'-Dipiridil/química , Catálise , Luz , Estrutura Molecular , OxirreduçãoRESUMO
Lanthanide-containing functional complexes have found a variety of applications in materials science and biomedicine because of their unique electroptical and magnetic properties. However, the poor stability and solubility in water of multicomponent lanthanide organic assemblies significantly limit their practical applications. We report here a series of water-stable anionic Ln2nL3n-type (n = 2, 3, 4, and 5) lanthanide organic polyhedra (LOPs) constructed by deprotonation self-assembly of three fully conjugated ligands (H4L1 and H4L2a/b) featuring a 2,6-pyridine bitetrazolate chelating moiety. The outcomes of the LOPs formation reactions were found to be very sensitive toward the reaction conditions including base, metal source, solvents, and concentrations as characterized by a combination of NMR, high-resolution ESI-MS and X-ray crystallography. Ligands H4L2a/b manifested an excellent sensitization toward lanthanide ions (Ln = EuIII and TbIII), with high luminescent quantum yields for Tb8L2a12 (Φ = 11.2% in water) and Eu8L2b12 (Φ = 76.8% in DMSO) measured in polar solvents. Furthermore, due to the giant molecular weight and rigidity of the polyhedral skeleton, Gd8L2b12 showed a very high longitudinal relaxivity (r1) of 400.53 mM-1S-1. The performance of Gd8L2b12 as potential magnetic resonance imaging contrast agents (CAs) in vivo was evaluated with much longer retention time in the tumor sites compared with the commercial GdIII-based CAs. Dual-modal imaging potential has also been demonstrated with the mixed Eu/Gd LOPs. Our results not only provide a new design route toward water-stable multinuclear lanthanide organic assemblies but also offer potential candidates of supramolecular-edifices for bioimaging and drug delivery.
Assuntos
Complexos de Coordenação/química , Elementos da Série dos Lantanídeos/química , Luminescência , Imageamento por Ressonância Magnética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Humanos , Elementos da Série dos Lantanídeos/farmacologia , Estrutura Molecular , Solubilidade , Estereoisomerismo , Água/químicaRESUMO
A series of multinuclear lanthanide-covalent organic polyhedra (LnCOPs), including pillar-typed triangular prisms 1-Ln3 and tetrahedra 2-Ln4 (Ln = LaIII, SmIII, EuIII), have been constructed for the first time, through either one-pot subcomponent self-assembly or postassembly metalation. In contrast to the known tetrahedral cages based on transition metals, the pillar-typed polyhedra were favored from the same organic components in the presence of lanthanides. Besides this, facile transmetalations between the 1-Ln3 polyhedra endow cascade chameleonic luminescence. Meanwhile, the open metal sites and pendent amine groups on 1-Ln3 enable these polyhedra to catalyze the Henry reaction efficiently.
RESUMO
We report here a guest-reaction-induced mitosis-like host transformation from a known Pd4 L2 cage 1 to a conjoined Pd6 L3 twin-cage 2 featuring two separate cavities. The encapsulation of 1-hydroxymethyl-2-naphthol (G1), a known ortho-quinone methide (o-QMs) precursor, within the hydrophobic cavity of cage 1 is found crucial to realize the cage to twin-cage conversion. Confined G1 molecules within the nanocavity undergo self-coupling dimerization reaction to form 2,2'-dihydroxy-1,1'-dinaphthylmethane (G2) which then triggers the cage to twin-cage mitosis. The same conversion also proceeds, in a much faster rate, via the direct templation of G2, confirming the induced-fit transformation mechanism. The structure of the (G2)2 â2 host-guest complex has been established by X-ray crystallographic study, where cis- to trans- conformational switch on one bridging ligand is revealed.
RESUMO
Materials with aggregation-induced emission (AIE) properties have received increased attention recently due to their potential applications in light-emitting devices, chemo/biosensors and biomedical diagnostics. In general, AIE requires the forced aggregation of the AIEgens induced by the poor solvent or close arrangement of AIEgens covalently attached to polymer chains. Here, we report two coordination-enhanced fluorescent supramolecular complexes featuring hierarchically restricted intramolecular motions via the self-assembly of tetraphenylethylene (TPE)-based tetra-dentate (La) and bidentate (Lb) ligands and the cis-Pd(en)(NO3)2 (en = ethylenediamine) unit. While the free ligands are non-emissive in dilute solution and show typical AIE properties in both mixed solvent system and the solid state, the self-assembled complexes maintain their fluorescent nature in the solution state. In particular, the Pd4(La)2 complex shows remarkable 6-fold fluorescent enhancement over La in dilute solution. We anticipate that these kinds of coordination-enhanced emissive supramolecules will find applications in biomedical sensing or labeling.
Assuntos
Complexos de Coordenação/química , Corantes Fluorescentes/química , Paládio/química , Estilbenos/química , Dimerização , Isomerismo , Ligantes , Estrutura Molecular , Espectrometria de Fluorescência/métodosRESUMO
Controlled self-assembly of predetermined multi-nuclear lanthanide organic polyhedra (LOPs) still presents a challenge, primarily due to the unpredictable coordination numbers and labile coordination geometries of lanthanide ions. In this study, through introducing triazole-based chelates to increase the chelating angle of C2-symmetric linear ligands and stabilize the coordination geometry of Eu(III) centers, M4L6-type (M = EuIII, L = ligand) tetrahedra were efficiently synthesized, especially a biphenyl-bridged ligand which is well known to form M2L3-type helicates. A series of LOPs were formed and characterized by high-resolution electrospray ionization time-of-flight mass spectroscopy (ESI-TOF-MS) and X-ray crystallography. Moreover, the europium complexes exhibit bright emission (luminescence quantum yield up to 42.4%) and circularly polarized luminescence properties (|glum| up to 4.5 × 10-2). This study provides a feasible strategy for constructing multi-nuclear luminescent LOPs towards potential applications.
RESUMO
An efficient approach was developed for the synthesis of the well-known BlueCage by pre-bridging two 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPT) panels with one linker followed by cage formation in a much improved yield and shortened reaction time. Such a stepwise methodology was further applied to synthesize three new pyridinium organic cages, C2, C3, and C4, where the low-symmetry cages C3 and C4 with angled panels demonstrated better recognition properties toward 1,1'-bi-2-naphthol (BINOL) than the high-symmetry analogue C2 featuring parallel platforms.
RESUMO
BACKGROUND: Hepatectomy is the first choice for treating liver cancer. However, inflammatory factors, released in response to pain stimulation, may suppress perioperative immune function and affect the prognosis of patients undergoing hepatectomies. AIM: To determine the short-term efficacy of microwave ablation in the treatment of liver cancer and its effect on immune function. METHODS: Clinical data from patients with liver cancer admitted to Suzhou Ninth People's Hospital from January 2020 to December 2023 were retrospectively analyzed. Thirty-five patients underwent laparoscopic hepatectomy for liver cancer (liver cancer resection group) and 35 patients underwent medical image-guided microwave ablation (liver cancer ablation group). The short-term efficacy, complications, liver function, and immune function indices before and after treatment were compared between the two groups. RESULTS: One month after treatment, 19 patients experienced complete remission (CR), 8 patients experienced partial remission (PR), 6 patients experienced stable disease (SD), and 2 patients experienced disease progression (PD) in the liver cancer resection group. In the liver cancer ablation group, 21 patients experienced CR, 9 patients experienced PR, 3 patients experienced SD, and 2 patients experienced PD. No significant differences in efficacy and complications were detected between the liver cancer ablation and liver cancer resection groups (P > 0.05). After treatment, total bilirubin (41.24 ± 7.35 vs 49.18 ± 8.64 µmol/L, P < 0.001), alanine aminotransferase (30.85 ± 6.23 vs 42.32 ± 7.56 U/L, P < 0.001), CD4+ (43.95 ± 5.72 vs 35.27 ± 5.56, P < 0.001), CD8+ (20.38 ± 3.91 vs 22.75 ± 4.62, P < 0.001), and CD4+/CD8+ (2.16 ± 0.39 vs 1.55 ± 0.32, P < 0.001) were significantly different between the liver cancer ablation and liver cancer resection groups. CONCLUSION: The short-term efficacy and safety of microwave ablation and laparoscopic surgery for the treatment of liver cancer are similar, but liver function recovers quickly after microwave ablation, and microwave ablation may enhance immune function.
RESUMO
Developing efficient adsorbents to capture radioactive iodine produced from nuclear wastes is highly desired. Here we report the facial synthesis of a hexacationic imidazolium organic cage and its iodine adsorption properties. Crucial role of counteranions has been disclosed for iodine capture with this cage, where distinct iodine capture behaviors were observed when different counteranions were used. Mechanistic investigations, especially with the X-ray crystallographic analysis of the iodine-loaded sample, allowed the direct visualization of the iodine binding modes at the molecular level. A network of multiple non-covalent interactions including hydrogen bonds, halogen bonds, anion···π interactions, electrostatic interaction between polyiodides and the hexacationic skeleton of the cage are found responsible for the observed high iodine capture performance. Our results may provide an alternative strategy to design efficient iodine adsorbents.
RESUMO
Brønsted-base active sites on a Pd4L2 cage facilitates enhanced catalytic efficiency, wide substrate scope and high turnover number (TON) for the one-pot photooxidation/Knoevenagel condensation reaction under mild conditions.
RESUMO
A series of lanthanide-organic pincer hosts were synthesized, which showed allosteric-controlled metal ion binding selectivities due to the lanthanide-induced subtle changes of the central vacant binding site.