RESUMO
Large-scale genetic association studies have identified multiple susceptibility loci for nasopharyngeal carcinoma (NPC), but the underlying biological mechanisms remain to be explored. To gain insights into the genetic etiology of NPC, we conducted a follow-up study encompassing 6,907 cases and 10,472 controls and identified two additional NPC susceptibility loci, 9q22.33 (rs1867277; OR = 0.74, 95% CI = 0.68-0.81, p = 3.08 × 10-11) and 17q12 (rs226241; OR = 1.42, 95% CI = 1.26-1.60, p = 1.62 × 10-8). The two additional loci, together with two previously reported genome-wide significant loci, 5p15.33 and 9p21.3, were investigated by high-throughput sequencing for chromatin accessibility, histone modification, and promoter capture Hi-C (PCHi-C) profiling. Using luciferase reporter assays and CRISPR interference (CRISPRi) to validate the functional profiling, we identified PHF2 at locus 9q22.33 as a susceptibility gene. PHF2 encodes a histone demethylase and acts as a tumor suppressor. The risk alleles of the functional SNPs reduced the expression of the target gene PHF2 by inhibiting the enhancer activity of its long-range (4.3 Mb) cis-regulatory element, which promoted proliferation of NPC cells. In addition, we identified CDKN2B-AS1 as a susceptibility gene at locus 9p21.3, and the NPC risk allele of the functional SNP rs2069418 promoted the expression of CDKN2B-AS1 by increasing its enhancer activity. The overexpression of CDKN2B-AS1 facilitated proliferation of NPC cells. In summary, we identified functional SNPs and NPC susceptibility genes, which provides additional explanations for the genetic association signals and helps to uncover the underlying genetic etiology of NPC development.
Assuntos
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Seguimentos , Predisposição Genética para Doença , Estudos de Associação Genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Homeodomínio/genéticaRESUMO
Autoantibodies (AAbs) in the blood of colorectal cancer (CRC) patients have been evaluated for tumor detection. However, it remains uncertain whether these AAbs are specific to tumor-associated antigens. In this study, we explored the IgG and IgM autoantibody repertoires in both the in situ tissue microenvironment and peripheral blood as potential tumor-specific biomarkers. We applied high-density protein arrays to profile AAbs in the tumor-infiltrating lymphocyte supernatants and corresponding serum from four patients with CRC, as well as in the serum of three noncancer controls. Our findings revealed that there were more reactive IgM AAbs than IgG in both the cell supernatant and corresponding serum, with a difference of approximately 3-5 times. Immunoglobulin G was predominant in the serum, while IgM was more abundant in the cell supernatant. We identified a range of AAbs present in both the supernatant and the corresponding serum, numbering between 432 and 780, with an average of 53.3% shared. Only 4.7% (n = 23) and 0.2% (n = 2) of reactive antigens for IgG and IgM AAbs, respectively, were specific to CRC. Ultimately, we compiled a list of 19 IgG AAb targets as potential tumor-specific AAb candidates. Autoantibodies against one of the top candidates, p15INK4b-related sequence/regulation of nuclear pre-mRNA domain-containing protein 1A (RPRD1A), were significantly elevated in 53 CRC patients compared to 119 controls (p < 0.0001). The project revealed that tissue-derived IgG AAbs, rather than IgM, are the primary source of tumor-specific AAbs in peripheral blood. It also identified potential tumor-specific AAbs that could be applied for noninvasive screening of CRC.
Assuntos
Autoanticorpos , Neoplasias Colorretais , Humanos , Biomarcadores Tumorais , Imunoglobulina G , Imunoglobulina M , Microambiente Tumoral , Proteínas Repressoras , Proteínas de Ciclo CelularRESUMO
Chemoradiation-induced hearing loss (CRIHL) is one of the most devasting side effects for nasopharyngeal carcinoma (NPC) patients, which seriously affects survivors' long-term quality of life. However, few studies have comprehensively characterized the risk factors for CRIHL. In this study, we found that age at diagnosis, tumor stage, and concurrent cisplatin dose were positively associated with chemoradiation-induced hearing loss. We performed a genome-wide association study (GWAS) in 777 NPC patients and identified rs1050851 (within the exon 2 of NFKBIA), a variant with a high deleteriousness score, to be significantly associated with hearing loss risk (HR = 5.46, 95% CI 2.93-10.18, P = 9.51 × 10-08). The risk genotype of rs1050851 was associated with higher NFKBIA expression, which was correlated with lower cellular tolerance to cisplatin. According to permutation-based enrichment analysis, the variants mapping to 149 hereditary deafness genes were significantly enriched among GWAS top signals, which indicated the genetic similarity between hereditary deafness and CRIHL. Pathway analysis suggested that synaptic signaling was involved in the development of CRIHL. Additionally, the risk score integrating genetic and clinical factors can predict the risk of hearing loss with a relatively good performance in the test set. Collectively, this study shed new light on the etiology of chemoradiation-induced hearing loss, which facilitates high-risk individuals' identification for personalized prevention and treatment.
Assuntos
Surdez , Perda Auditiva , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Cisplatino/efeitos adversos , Estudo de Associação Genômica Ampla , Qualidade de Vida , Perda Auditiva/induzido quimicamente , Perda Auditiva/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/induzido quimicamenteRESUMO
Epstein-Barr virus (EBV) infection is associated with multiple malignancies, including pulmonary lymphoepithelioma-like carcinoma (pLELC), a particular subtype of primary lung cancer. However, the genomic characteristics of EBV related to pLELC remain unclear. Here, we obtained the whole-genome data set of EBV isolated from 78 pLELC patients and 37 healthy controls using EBV-captured sequencing. Compared with the reference genome (NC_007605), a total of 3,995 variations were detected across pLELC-derived EBV sequences, with the mutational hot spots located in latent genes. Combined with 180 published EBV sequences derived from healthy people in Southern China, we performed a genome-wide association study and identified 32 variations significantly related to pLELC (P < 2.56 × 10-05, Bonferroni correction), with the top signal of single nucleotide polymorphism (SNP) coordinate T7327C (OR = 1.22, P = 2.39 × 10-15) locating in the origin of plasmid replication (OriP). The results of population structure analysis of EBV isolates in East Asian showed the EBV strains derived from pLELC were more similar to those from nasopharyngeal carcinoma (NPC) than other EBV-associated diseases. In addition, typical latency type-II infection were recognized for EBV of pLELC at both transcription and methylation levels. Taken together, we defined the global view of EBV genomic profiles in pLELC patients for the first time, providing new insights to deepening our understanding of this rare EBV-associated primary lung carcinoma. IMPORTANCE Pulmonary lymphoepithelioma-like carcinoma (pLELC) is a rare, distinctive subtype of primary lung cancer closely associated with Epstein-Barr virus (EBV) infection. Here, we gave the first overview of pLELC-derived EBV at the level of genome, methylation and transcription. We obtained the EBV sequences data set from 78 primary pLELC patients, and revealed the sequences diversity across EBV genome and detected variability in known immune epitopes. Genome-wide association analysis combining 217 healthy controls identifies significant variations related to the risk of pLELC. Meanwhile, we characterized the integration landscapes of EBV at the genome-wide level. These results provided new insight for understanding EBV's role in pLELC tumorigenesis.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/virologia , Infecções por Vírus Epstein-Barr/virologia , Genoma Viral/genética , Herpesvirus Humano 4/genética , Neoplasias Pulmonares/virologia , Povo Asiático , China , Metilação de DNA , Epitopos de Linfócito T/genética , Genes Virais/genética , Variação Genética , Estudo de Associação Genômica Ampla , Herpesvirus Humano 4/isolamento & purificação , Humanos , Integração Viral , Latência Viral/genéticaRESUMO
Human leukocyte antigen (HLA) molecules are essential for presenting Epstein-Barr virus (EBV) antigens and are closely related to nasopharyngeal carcinoma (NPC). This study aims to systematically investigate the association between HLA-bound EBV peptides and NPC risk through in silico HLA-peptide binding prediction. A total of 455 NPC patients and 463 healthy individuals in NPC endemic areas were recruited, and HLA-target sequencing was performed. HLA-peptide binding prediction for EBV, followed by peptidome-wide logistic regression and motif analysis, was applied. Binding affinity changes for EBV peptides carrying high-risk mutations were analyzed. We found that NPC-associated EBV peptides were significantly enriched in immunogenic proteins and core linkage disequilibrium (LD) proteins related to evolution, especially those binding HLA-A alleles (p = 3.10 × 10-4 for immunogenic proteins and p = 8.10 × 10-5 for core LD proteins related to evolution). These peptides were clustered and showed binding motifs of HLA supertypes, among which supertype A02 presented an NPC-risk effect (padj = 3.77 × 10-4 ) and supertype A03 presented an NPC-protective effect (padj = 4.89 × 10-4 ). Moreover, a decreased binding affinity toward risk HLA supertype A02 was observed for the peptide carrying the NPC-risk mutation BNRF1 V1222I (p = 0.0078), and an increased binding affinity toward protective HLA supertype A03 was observed for the peptide carrying the NPC-risk mutation BALF2 I613V (p = 0.022). This study revealed the distinct preference of EBV peptides for binding HLA supertypes, which may contribute to shaping EBV population structure and be involved in NPC development.
Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Epitopos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Carcinoma Nasofaríngeo/genética , Antígenos de Histocompatibilidade Classe II , Neoplasias Nasofaríngeas/genéticaRESUMO
Previous studies have demonstrated strong associations between host genetic factors and Epstein-Barr virus (EBV) VCA-IgA with the risk of nasopharyngeal carcinoma (NPC). However, the specific interplay between host genetics and EBV VCA-IgA on NPC risk is not well understood. In this two-stage case-control study (N = 4804), we utilized interaction and mediation analysis to investigate the interplay between host genetics (genome-wide association study-derived polygenic risk score [PRS]) and EBV VCA-IgA antibody level in the NPC risk. We employed a four-way decomposition analysis to assess the extent to which the genetic effect on NPC risk is mediated by or interacts with EBV VCA-IgA. We consistently found a significant interaction between the PRS and EBV VCA-IgA on NPC risk (discovery population: synergy index [SI] = 2.39, 95% confidence interval [CI] = 1.85-3.10; replication population: SI = 3.10, 95% CI = 2.17-4.44; all pinteraction < 0.001). Moreover, the genetic variants included in the PRS demonstrated similar interactions with EBV VCA-IgA antibody. We also observed an obvious dose-response relationship between the PRS and EBV VCA-IgA antibody on NPC risk (all ptrend < 0.001). Furthermore, our decomposition analysis revealed that a substantial proportion (approximately 90%) of the genetic effects on NPC risk could be attributed to host genetic-EBV interaction, while the risk effects mediated by EBV VCA-IgA antibody were weak and statistically insignificant. Our study provides compelling evidence for an interaction between host genetics and EBV VCA-IgA antibody in the development of NPC. These findings emphasize the importance of implementing measures to control EBV infection as a crucial strategy for effectively preventing NPC, particularly in individuals at high genetic risk.
Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Neoplasias Nasofaríngeas/genética , Estudos de Casos e Controles , Estudo de Associação Genômica Ampla , Anticorpos Antivirais/genética , Proteínas do Capsídeo/genética , Antígenos Virais/genética , Imunoglobulina ARESUMO
To better understand the genomic characteristics of Epstein-Barr virus (EBV) in familial nasopharyngeal carcinoma (NPC), we sequenced the EBV genomes by whole-genome capture in 38 unrelated patients with NPC family history in first-degree relatives and 47 healthy controls, including 13 with family history and 34 without. Compared with type 1 reference genome, mutation hotspots were observed in the latent gene regions of EBV in familial NPC cases. Population structure analysis showed that one cluster has a higher frequency in familial cases than in controls (OR=5.33, 95â% CI 2.50-11.33, P=1.42×10-5), and similar population structure composition was observed among familial and sporadic NPC cases in high-endemic areas. By genome-wide association analysis, four variants were found to be significantly associated with familial NPC. Consistent results were observed in the meta-analysis integrating two published case-control EBV sequencing studies in NPC high-endemic areas. High-risk haplotypes of EBV composed of 34 variants were associated with familial NPC risk (OR=13.85, 95â% CI 4.13-46.44, P=2.06×10-5), and higher frequency was observed in healthy blood-relative controls with NPC family history (9/13, 69.23â%) than those without family history (16/34, 47.06%). This study suggested the potential contribution of EBV high-risk subtypes to familial aggregation of NPC.
Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Estudo de Associação Genômica Ampla , Genômica , Herpesvirus Humano 4/genética , Humanos , Carcinoma Nasofaríngeo/complicações , Carcinoma Nasofaríngeo/genéticaRESUMO
BACKGROUND: Radiation-induced oral mucositis (OM) is one of the most common acute complications for head and neck cancer. Severe OM is associated with radiation treatment breaks, which harms successful tumor management. Radiogenomics studies have indicated that genetic variants are associated with adverse effects of radiotherapy. METHODS: A large-scale genome-wide scan was performed in 1467 nasopharyngeal carcinoma patients, including 753 treated with 2D-CRT from Genetic Architecture of the Radiotherapy Toxicity and Prognosis (GARTP) cohort and 714 treated with IMRT (192 from the GARTP and 522 newly recruited). Subgroup analysis by radiotherapy technique was further performed in the top associations. We also performed physical and regulatory mapping of the risk loci and gene set enrichment analysis of the candidate target genes. RESULTS: We identified 50 associated genomic loci and 64 genes via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping and gene-based analysis, and 36 of these loci were replicated in subgroup analysis. Interestingly, one of the top loci located in TNKS, a gene relevant to radiation toxicity, was associated with increased OM risk with OR = 3.72 of the lead SNP rs117157809 (95% CI 2.10-6.57; P = 6.33 × 10-6). Gene set analyses showed that the 64 candidate target genes were enriched in the biological processes of regulating telomere capping and maintenance and telomerase activity (Top P = 7.73 × 10-7). CONCLUSIONS: These results enhance the biological understanding of radiotherapy toxicity. The association signals enriched in telomere function regulation implicate the potential underlying mechanism and warrant further functional investigation and potential individual radiotherapy applications.
Assuntos
Neoplasias Nasofaríngeas , Estomatite , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Carcinoma Nasofaríngeo , Polimorfismo de Nucleotídeo Único/genética , Estomatite/genéticaRESUMO
The genetic mechanisms underlying the poor prognosis of esophageal squamous cell carcinoma (ESCC) are not well understood. Here, we report somatic mutations found in ESCC from sequencing 10 whole-genome and 57 whole-exome matched tumor-normal sample pairs. Among the identified genes, we characterized mutations in VANGL1 and showed that they accelerated cell growth in vitro. We also found that five other genes, including three coding genes (SHANK2, MYBL2, FADD) and two non-coding genes (miR-4707-5p, PCAT1), were involved in somatic copy-number alterations (SCNAs) or structural variants (SVs). A survival analysis based on the expression profiles of 321 individuals with ESCC indicated that these genes were significantly associated with poorer survival. Subsequently, we performed functional studies, which showed that miR-4707-5p and MYBL2 promoted proliferation and metastasis. Together, our results shed light on somatic mutations and genomic events that contribute to ESCC tumorigenesis and prognosis and might suggest therapeutic targets.
Assuntos
Carcinogênese/genética , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Regulação Neoplásica da Expressão Gênica , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Variações do Número de Cópias de DNA , Carcinoma de Células Escamosas do Esôfago , Exoma , Proteína de Domínio de Morte Associada a Fas/genética , Feminino , Perfilação da Expressão Gênica , Estudos de Associação Genética , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Pessoa de Meia-Idade , Mutação , Proteínas do Tecido Nervoso/genética , Prognóstico , Seleção Genética , Transativadores/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Tissues from tumor patients are important resources for promoting cancer research, and therefore many biobanks have been established to collect tumor tissues; however, the quality of tumor tissues after surgical resection has not been well documented. METHODS: A total of 896 cases of tissues from 12 types of tumors were chosen for this study. First, histopathological examination was conducted to evaluate the tumor cell content; second, microchip electrophoresis was used to determine the RNA integrity number (RIN) in 466 cases of tissues with a tumor cell content ≥ 75%; and, finally, a correlation test was used to analyze the effect of ischemia on RNA integrity in 384 cases of tissues with a recorded ischemia time. RESULTS: Tumor tissues from 12 different organs had different tumor cell contents and RNA integrity. The liver had the highest percentage (69.7%) of tissue samples with a tumor cell content ≥ 75%, and the highest percentage (96%) of samples with an RIN ≥ 7. RNA integrity was not correlated with limited ex vivo ischemia time (5-60 min) in any of the 12 types of tumors. In contrast, a significant correlation with in vivo ischemia time was observed in several types of tumors. CONCLUSIONS: Not every sample of excised tumor tissue has a sufficient amount of tumor cells and enough RNA integrity. In vivo ischemia has a more significant influence on RNA integrity, and tumor tissues have different tolerances to pre-analytical variables. Those conducting translational research should pay attention to pre-analytical variables when collecting and utilizing tumor tissues.
Assuntos
Isquemia/fisiopatologia , Neoplasias/genética , Neoplasias/patologia , RNA Neoplásico/análise , Manejo de Espécimes/métodos , Humanos , RNA Neoplásico/genética , Fatores de Tempo , Bancos de TecidosRESUMO
A number of studies have investigated the association between the NBS1 Glu185Gln (rs1805794, 8360 G>C) polymorphism and risk for urinary system cancer including bladder cancer, prostate cancer, and renal cell cancer; however, the findings are conflicting. We conducted a meta-analysis focusing on eight published studies with 3,542 cases and 4,210 controls to derive a more precise evaluation of the relationship between the NBS1 Glu185Gln polymorphism and urinary system cancer susceptibility. Overall, the NBS1 Glu185Gln polymorphism was significantly related to increased risk for urinary system cancer (homozygous model: odds ratio (OR)=1.23, 95 % confidence interval (95% CI)= 1.051.44, p=0.011; heterozygous model: OR=1.14, 95% CI=1.041.26, p=0.008; dominant model: OR=1.16, 95% CI=1.051.27, p=0.002; and Gln vs. Glu: OR=1.12, 9% CI=1.041.20, p=0.002) and further stratification analysis indicated an increased risk for bladder cancer (heterozygous model: OR=1.13, 95% CI=1.021.26, p=0.022; dominant model: OR=1.14, 95% CI=1.031.26, p=0.014; and Gln vs. Glu: OR=1.09, 95%CI=1.011.18, p=0.023) and Caucasian populations (homozygous model: OR=1.33, 95% CI=1.111.59, p=0.002; heterozygous model: OR=1.16, 95% CI=1.041.30, p=0.009; dominant model: OR=1.19, 95% CI=1.071.32, p=0.001; and Gln vs. Glu: OR=1.15, 95% CI=1.061.25, p<0.001). Despite some limitations, this meta-analysis established some solid statistical evidence for the association between NBS1 Glu185Gln polymorphism and increased risk for urinary system cancer, especially for bladder cancer, but more well-designed prospective studies are needed to further verify our findings.
Assuntos
Proteínas de Ciclo Celular/genética , Predisposição Genética para Doença , Proteínas Nucleares/genética , Polimorfismo Genético/genética , Neoplasias da Bexiga Urinária/genética , Estudos de Casos e Controles , Humanos , PrognósticoRESUMO
MicroRNAs (miRNAs), which play a role in tumorigenesis, may also serve as diagnostic or prognostic biomarkers. However, studies on human miRNA profiles in plasma from nasopharyngeal carcinoma (NPC) patients are in their infancy. Here, we used microarrays to perform systematic profiling of human miRNAs in plasma from NPC patients. We subsequently used real-time quantitative polymerase chain reaction (Q-PCR) to validate miRNAs with aberrant expression that could serve as potential biomarkers. By comparing the plasma miRNA profiles of 31 NPC patients and 19 controls, 39 of 887 human miRNAs were found to be aberrantly expressed. Considering the fold change and P value, miR-548q and miR-483-5p were validated in 132 samples from 82 NPC patients and 50 controls. Moreover, high expression of miR-548q and miR-483-5p was further found in 3 NPC cell lines and clinical biopsy tissues from 54 NPC patients and 22 controls. Our results revealed that miR-548q and miR-483-5p are potential biomarkers of NPC. Combining the receiver operating characteristic (ROC) analyses of these 2 miRNAs, an area under the ROC curve (AUC) of 0.737 with 67.1% sensitivity and 68.0% specificity were obtained, showing the preliminary diagnostic value of plasma miRNAs. Moreover, most NPC patients with a poor outcome exhibited high expression (> median) of miR-548q (70.6%) and miR-483-5p (64.7%) in tissue samples, indicating their prognostic value. The high expression levels of miR-548q and miR-483-5p in plasma, cell lines, and clinical tissues of NPC patients indicate that their roles in NPC should be explored in the future.
Assuntos
Biomarcadores , MicroRNAs , Neoplasias Nasofaríngeas , Idoso , Carcinoma , Humanos , Carcinoma Nasofaríngeo , Plasma , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e EspecificidadeRESUMO
BACKGROUND AND PURPOSE: Radiation-induced brain injury (RBI) is a severe radiotoxicity for nasopharyngeal carcinoma (NPC) patients, greatly affecting their long-term life quality and survival. We aim to establish a comprehensive predictive model including clinical factors and newly developed genetic variants to improve the precision of RBI risk stratification. MATERIALS AND METHODS: By performing a large registry-based retrospective study with magnetic resonance imaging follow-up on RBI development, we conducted a genome-wide association study and developed a polygenic risk score (PRS) for RBI in 1189 NPC patients who underwent intensity-modulated radiotherapy. We proposed a tolerance dose scheme for temporal lobe radiation based on the risk predicted by PRS. Additionally, we established a nomogram by combining PRS and clinical factors for RBI risk prediction. RESULTS: The 38-SNP PRS could effectively identify high-risk individuals of RBI (P = 1.42 × 10-34). Based on genetic risk calculation, the recommended tolerance doses of temporal lobes should be 57.6 Gy for individuals in the top 10 % PRS subgroup and 68.1 Gy for individuals in the bottom 50 % PRS. Notably, individuals with high genetic risk (PRS > P50) and receiving high radiation dose in the temporal lobes (D0.5CC > 65 Gy) had an approximate 50-fold risk over individuals with low PRS and receiving low radiation dose (HR = 50.09, 95 %CI = 24.27-103.35), showing an additive joint effect (Pinteraction < 0.001). By combining PRS with clinical factors including age, tumor stage, and radiation dose of temporal lobes, the predictive accuracy was significantly improved with C-index increased from 0.78 to 0.85 (P = 1.63 × 10-2). CONCLUSIONS: The PRS, together with clinical factors, could improve RBI risk stratification and implies personalized radiotherapy.
Assuntos
Lesões Encefálicas , Neoplasias Nasofaríngeas , Radioterapia de Intensidade Modulada , Humanos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/patologia , Estudos Retrospectivos , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/tratamento farmacológico , Estudo de Associação Genômica Ampla , Lesões Encefálicas/etiologia , Radioterapia de Intensidade Modulada/efeitos adversos , Medição de RiscoRESUMO
BACKGROUND: Nasopharyngeal carcinoma (NPC) exhibits significant familial aggregation; however, its susceptibility genes are largely unknown. Thus, this study aimed to identify germline mutations that might contribute to the risk of familial NPC, and explore their biological functions. METHODS: Whole-exome sequencing was performed in 13 NPC pedigrees with multiple cases. Mutations co-segregated with disease status were further validated in a cohort composed of 563 probands from independent families, 2,953 sporadic cases, and 3,175 healthy controls. Experimental studies were used to explore the functions of susceptibility genes and their disease-related mutations. FINDINGS: The three rare missense mutations in POLN (DNA polymerase nu) gene, P577L, R303Q, and F545C, were associated with familial NPC risk (5/576 [0·87%] in cases vs. 2/3374 [0·059%] in healthy controls with an adjusted OR of 44·84 [95% CI:3·91-514·34, p = 2·25 × 10-3]). POLN was involved in Epstein-Barr virus (EBV) lytic replication in NPC cells in vitro. POLN promoted viral DNA replication, immediate-early and late lytic gene expression, and progeny viral particle production, ultimately affecting the proliferation of host cells. The three mutations were located in two pivotal functional domains and were predicted to alter the protein stability of POLN in silico. Further assays demonstrated that POLN carrying any of the three mutations displayed reduced protein stability and decreased expression levels, thereby impairing its ability to promote complete EBV lytic replication and facilitate cell survival. INTERPRETATION: We identified a susceptibility gene POLN for familial NPC and elucidated its function. FUNDING: This study was funded by the National Key Research and Development Program of China (2021YFC2500400); the National Key Research and Development Program of China (2020YFC1316902); the Basic and Applied Basic Research Foundation of Guangdong Province, China (2021B1515420007); the National Natural Science Foundation of China (81973131); the National Natural Science Foundation of China (82003520); the National Natural Science Foundation of China (81903395).
Assuntos
DNA Polimerase Dirigida por DNA , Infecções por Vírus Epstein-Barr , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Replicação do DNA , DNA Viral/genética , DNA Viral/metabolismo , DNA Polimerase Dirigida por DNA/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Mutação , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Replicação ViralRESUMO
Background: It remains controversial who would benefit from adjuvant chemotherapy (ACT) in patients with early-stage non-small cell lung cancer (NSCLC). We aim to construct a polygenic hazard score (PHS) to predict prognosis and ACT benefit among NSCLC patients. Methods: We conducted a retrospective study including 1,395 stage I-II NSCLC patients. We performed a genome-wide association study (GWAS) on overall survival (OS) in patients treated with ACT (SYSUCC ACT set, n=404), and then developed a PHS using LASSO Cox regression in a random subset (training, n=202) and tested it in the remaining set (test, n=202). The PHS was further validated in two independent datasets (SYSUCC surgery set, n=624; PLCO cohort, n=367). Results: The GWAS-derived PHS consisting of 37 single-nucleotide polymorphisms (SNPs) was constructed to classify patients into high and low PHS groups. For patients treated with ACT, those with low PHS had better clinical outcomes than high PHS (test set: HR =0.21, P<0.001; PLCO ACT set: HR =0.33, P=0.260). Similar results were found in the extended validation cohorts including patients with or without ACT (SYSUCC: HR =0.48, P<0.001; PLCO: HR =0.60, P=0.033). Within subgroup analysis by treatment or clinical factors, we further observed consistent results for the prognostic value of the PHS. Notably, ACT significantly improved OS in stage II patients with low PHS (HR =0.26, P<0.001), while there was no ACT survival benefit among patients with high PHS (HR =0.97, P=0.860). Conclusions: The PHS improved prognostic stratification and could help identify patients who were most likely to benefit from ACT in early-stage NSCLC.
RESUMO
BACKGROUND: Nasopharyngeal carcinoma (NPC) is closely associated with genetic factors and Epstein-Barr virus infection, showing strong familial aggregation. Individuals with a family history suffer elevated NPC risk, requiring effective genetic counseling for risk stratification and individualized prevention. METHODS: We performed whole-exome sequencing on 502 familial NPC patients and 404 unaffected relatives and controls. We systematically evaluated the established cancer predisposition genes and investigated novel NPC susceptibility genes, making comparisons with 21 other familial cancers in the UK biobank (N = 5218). RESULTS: Rare pathogenic mutations in the established cancer predisposition genes were observed in familial NPC patients, including ERCC2 (1.39%), TP63 (1.00%), MUTYH (0.80%), and BRCA1 (0.80%). Additionally, 6 novel susceptibility genes were identified. RAD54L, involved in the DNA repair pathway together with ERCC2, MUTYH, and BRCA1, showed the highest frequency (4.18%) in familial NPC. Enrichment analysis found mutations in TP63 were enriched in familial NPC, and RAD54L and EML2 were enriched in both NPC and other Epstein-Barr virus-associated cancers. Besides rare variants, common variants reported in the studies of sporadic NPC were also associated with familial NPC risk. Individuals in the top quantile of common variant-derived genetic risk score while carrying rare variants exhibited increased NPC risk (odds ratio = 13.47, 95% confidence interval = 6.33 to 28.68, P = 1.48 × 10-11); men in this risk group showed a cumulative lifetime risk of 24.19%, much higher than those in the bottom common variant-derived genetic risk score quantile and without rare variants (2.04%). CONCLUSIONS: This study expands the catalog of NPC susceptibility genes and provides the potential for risk stratification of individuals with an NPC family history.
Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Masculino , Humanos , Carcinoma Nasofaríngeo/genética , Sequenciamento do Exoma , Neoplasias Nasofaríngeas/epidemiologia , Neoplasias Nasofaríngeas/genética , Predisposição Genética para Doença , Herpesvirus Humano 4/genética , Estudos de Casos e Controles , Proteína Grupo D do Xeroderma Pigmentoso/genéticaRESUMO
Background: Plasma Epstein-Barr virus (EBV) DNA load has been widely used for nasopharyngeal carcinoma (NPC) prognostic risk stratification. However, oral EBV DNA load, a non-invasive biomarker that reflects the EBV lytic replication activity, has not been evaluated for its prognostic value in NPC yet. Methods: A total number of 1,194 locoregionally advanced NPC (LA-NPC) patients from south China were included from a prospective observational cohort (GARTC) with a median follow-up of 107.3 months. Pretreatment or mid-treatment mouthwashes were collected for EBV DNA detection by quantitative polymerase chain reaction (qPCR). The difference of pre- and mid-treatment oral EBV DNA load was tested by the Wilcoxon signed-rank test. The associations of oral EBV DNA load with overall survival (OS), progression-free survival (PFS), distant metastasis-free survival (DMFS), and locoregional relapse-free survival (LRFS) were assessed using the log-rank test and multivariate Cox regression. Results: The high level of the oral EBV DNA load (>2,100 copies/mL) was independently associated with worse OS (HR = 1.45, 95% CI: 1.20-1.74, p < 0.001), PFS (HR = 1.38, 95% CI: 1.16-1.65, p < 0.001), DMFS (HR = 1.66, 95% CI: 1.25-2.21, p = 0.001), and LRFS (HR = 1.43, 95% CI: 1.05-1.96, p = 0.023). Similar and robust associations between oral EBV DNA load and prognosis were observed for patients in both the pretreatment and mid-treatment stages. The detection rate (71.7 vs. 48.6%, p < 0.001) and the median load of oral EBV DNA (13,368 vs. 382 copies/mL, p < 0.001) for patients in the pretreatment stage were significantly higher than those in the mid-treatment stage. The combination of the oral EBV DNA load and TNM staging provided a more precise risk stratification for the LA-NPC patients. Conclusion: Oral EBV DNA load was an alternative non-invasive predictor of prognosis and may facilitate risk stratification for the LA-NPC patients.
RESUMO
BACKGROUND: Radiation-induced brain injury is a nonnegligible issue in the management of cancer patients treated by partial or whole brain irradiation. In particular, temporal lobe injury (TLI), a deleterious late complication in nasopharyngeal carcinoma, greatly affects the long-term life quality of these patients. Although genome-wide association studies (GWASs) have successfully identified single nucleotide polymorphisms (SNPs) associated with radiation toxicity, genetic variants contributing to the radiation-induced brain injury have not yet been assessed. METHODS: We recruited and performed follow-up for a prospective observational cohort, Genetic Architecture of Radiotherapy Toxicity and Prognosis, using magnetic resonance imaging for TLI diagnosis. We conducted genome-wide association analysis in 1082 patients and validated the top associations in two independent cohorts of 1119 and 741 patients, respectively. All statistical tests were two-sided. RESULTS: We identified a promoter variant rs17111237 (A > G, minor allele frequency [MAF] = 0.14) in CEP128 associated with TLI risk (hazard ratio = 1.45, 95% confidence interval = 1.26 to 1.66, Pcombined=3.18 × 10-7) which is in moderate linkage disequilibrium (LD) with rs162171 (MAF = 0.18, R2 = 0.69), the top signal in CEP128 (hazard ratio = 1.46, 95% confidence interval = 1.29-1.66, Pcombined= 6.17 × 10-9). Combining the clinical variables with the top SNP, we divided the patients into different subgroups with varying risk with 5-year TLI-free rates ranging from 33.7% to 95.5%. CEP128, a key component of mother centriole, tightly interacts with multiple radiation-resistant genes and plays an important role in maintaining the functional cilia, which otherwise will lead to a malfunction of the neural network. We found that A > G alteration at rs17111237 impaired the promoter activity of CEP128 and knockdown of CEP128 decreased the clonogenic cell survival of U87 cells under radiation. Noteworthy, 12.7% (27/212) of the GWAS-based associated genes (P < .001) were enriched in the neurogenesis pathway. CONCLUSIONS: This three-stage study is the first GWAS of radiation-induced brain injury that implicates the genetic susceptibility gene CEP128 involved in TLI development and provides the novel insight into the underlying mechanisms of radiation-induced brain injury.
Assuntos
Lesões Encefálicas/genética , Lesões por Radiação/genética , Lobo Temporal/efeitos da radiação , Adulto , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/radioterapia , Regiões Promotoras Genéticas , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Lobo Temporal/patologiaRESUMO
BACKGROUND: Tissue specimens for nasopharyngeal carcinoma (NPC) research are scarce because of sampling difficulties. Previous studies have suggested non-invasive nasopharyngeal brushing as an effective sampling method for NPC diagnosis. The present study aimed to evaluate the feasibility of nasopharyngeal brushing in the acquisition of NPC nucleic acids for research. METHODS: Nasopharyngeal brushing samples were acquired from 24 healthy individuals and 48 NPC patients. Tissues from 48 NPC and 18 nasopharyngitis patients were collected by endoscopic biopsy. The expression levels of tumor suppressor genes (TSGs) and Epstein-Barr virus (EBV)-encoded microRNAs as well as EBV DNA copy number were measured by quantitative polymerase chain reaction in both types of samples. RESULTS: Among six TSGs examined, the expression levels of two genes were significantly decreased in nasopharyngeal brushing and tissue samples from NPC patients as compared with those from healthy/nasopharyngitis individuals. Four EBV-encoded microRNAs, mir-bart1-5p, mir-bart5, mir-bart6-5p, and mir-bart17-5p, were significantly up-regulated in both NPC brushing and tissue samples compared with those from healthy/nasopharyngitis controls (P < 0.001). EBV DNA was significantly increased in both nasopharyngeal brushing samples (P < 0.001) and tissue samples (P < 0.001) from NPC patients in comparison with those from healthy controls. CONCLUSIONS: Nasopharyngeal brushing can obtain sufficient tumoral materials for the analysis of viral nucleic acid, including EBV-encoded microRNAs and EBV DNA. For the detection of TSG expression, nasopharyngeal brushings was feasible but inferior to tissue samples. This study confirms nasopharyngeal brushing as an applicable sampling method that can aid in nucleic acid-based NPC research.