Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1159139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361231

RESUMO

Introduction: Kartogenin (KGN) is a small-molecule compound that has been reported to improve the chondrogenic differentiation of mesenchymal stem cells in vitro and to alleviate knee joint osteoarthritis in animal models. However, whether KGN has any effect on temporomandibular joint osteoarthritis (TMJOA) remains unclear. Methods: We first performed partial temporomandibular joint (TMJ) discectomy to induce TMJOA in rats. Histological analysis, tartrate-resistant acid phosphatase staining, and immunohistochemistry were used to assess the therapeutic effect of KGN on TMJOA in vivo. CCK8 and pellet cultures were used to determine whether KGN treatment could promote the proliferation and differentiation of FCSCs in vitro. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the expression of aggrecan, Col2a1, and Sox9 in FCSCs. Furthermore, we performed western blot to analysis the effect of KGN treatment on the expression of Sox9 and Runx2 in FCSCs. Results and discussion: Histological analysis, tartrate-resistant acid phosphatase staining, and immunohistochemistry showed that intra-articular injection of KGN attenuated cartilage degeneration and subchondral bone resorption in vivo. Further analyses of the underlying mechanisms revealed that KGN enhanced chondrocyte proliferation, increased the number of cells in both superficial and proliferative zones of TMJ condylar cartilage in vivo, enhanced the proliferation and chondrogenic differentiation of fibrocartilage stem cells (FCSCs), and upregulated the expression of chondrogenesis-related factors in vitro. Collectively, in our study, KGN was shown to promote FCSC chondrogenesis and restore TMJ cartilage, suggesting that KGN injections might be a potential treatment for TMJOA.

2.
Int Immunopharmacol ; 124(Pt B): 111014, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832237

RESUMO

OBJECTIVE: Previous studies have demonstrated that PPARγ deficiency is associated with osteoarthritis in the knee joint. However, whether epigenetic PPARγ dysregulation has any effect on temporomandibular joint osteoarthritis (TMJOA) is unknown. This study aims to determine the role and mechanism of epigenetic PPARγ dysregulation in TMJOA. METHODS: Partial TMJ discectomy was performed to induce TMJOA in rat. Primary condylar chondrocytes were isolated, and TNF-α-induced inflammatory condition was created in vitro. The expressions of PPARγ and DNA methyltransferase were investigated in vivo and in vitro. The association of PPARγ and DNA methylation was further studied by treating chondrocytes with DNA demethylation agent 5-Aza-2'-deoxycytidine (5Aza) and transfecting with siRNA of DNA methyltransferase (DNMT)1 and DNMT3a, and the methylation level of PPARγ promoter was evaluated by Bisulfite-sequencing PCR. The chondroprotective effects of 5Aza were explored in vitro and in vivo. RESULTS: PPARγ suppression and upregulated DNMT1/DNMT3a expression exist in TMJOA cartilage in vivo and primary condylar chondrocytes under TNF-α-induced inflammatory conditions in vitro. DNMT1 and DNMT3a elevation contributes to PPARγ-promoter hypermethylation in TMJ chondrocytes under TNF-α-induced inflammation conditions. DNA demethylation intervention by 5Aza protects chondrocytes from inflammation response in vitro. Mechanistically, 5Aza reversed the hypermethylation of the PPARγ promoter and subsequently resulted in PPARγ restoration and decreased expression of cartilage-catabolic factors in chondrocytes. Rat TMJOA model revealed that 5Aza, by reversing PPARγ suppression, effectively attenuated cartilage degeneration and stabilized cartilage homeostasis by balancing anabolic factor and catabolic factor expression. CONCLUSION: Epigenetic PPARγ suppression may play a causal role in TMJOA pathogenesis, which can be alleviated by DNA demethylation with 5Aza treatment. This study provides new insights into the pathogenic mechanism and therapeutic strategy of TMJOA.


Assuntos
Epigênese Genética , Osteoartrite , PPAR gama , Animais , Ratos , Condrócitos/metabolismo , DNA/metabolismo , Metilação de DNA , Inflamação/metabolismo , Osteoartrite/metabolismo , PPAR gama/metabolismo , Articulação Temporomandibular/patologia , Fator de Necrose Tumoral alfa/metabolismo
3.
Bone ; 158: 116372, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218985

RESUMO

Abnormal Wnt signaling has been shown to be involved in the pathogenesis of temporomandibular joint osteoarthritis (TMJOA). Recent studies demonstrates that SM04690, a small-molecule inhibitor of the Wnt signaling pathway, is able to promote cartilage regeneration in a rat model of knee joint osteoarthritis. However, whether SM04690 has any effect on TMJOA is unknown. Here we first performed partial TMJ discectomy to induce TMJOA in rabbit and rat. Histology, TRAP staining, immunohistochemistry and µCT analysis showed intra-articular injection of SM04690 protected condylar cartilage from degeneration and attenuated abnormal subchondral bone remodeling of TMJ condylar in both rabbit and rat model TMJOA. We isolated and cultured primary condylar chondrocytes for in vitro studies to investigate molecular mechanisms and downstream effects of SM04690. We found that SM04690 inhibited the canonical Wnt pathway, upregulated the expression of Wnt16 and cartilage anabolic factors including COL2A1, SOX9 and aggrecan, suppressed the expression of cartilage catabolic factor MMP13 and protected chondrocytes from TNF-α-induced inflammatory response. Previous studies have identified fibrocartilage stem cells (FCSCs) localized within the TMJ condyle superficial zone niche that regenerate cartilage and repair joint injury. Here we showed that intra-articular injection of SM04690 increased the number of the TMJ condyle superficial zone (SZ) cells in vivo. Further in vitro studies revealed that SM04690 enhanced FCSCs chondrogenesis and formation of cartilaginous-like tissue in pellet cultures. Taken together, our work demonstrates that SM04690 treatment might be able to promote FCSCs chondrogenesis and repair TMJ cartilage, highlighting the therapeutic potential of intra-articular injection of SM04690 in TMJOA.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Animais , Cartilagem Articular/patologia , Condrócitos/metabolismo , Progressão da Doença , Imidazóis , Indazóis , Injeções Intra-Articulares , Osteoartrite do Joelho/patologia , Piridinas , Coelhos , Ratos , Articulação Temporomandibular/patologia , Via de Sinalização Wnt
4.
Bone ; 143: 115793, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33301961

RESUMO

WNT16 has been shown to play important roles in joint formation, bone homeostasis and knee joint osteoarthritis. However, whether WNT16 has any effect during temporomandibular joint osteoarthritis (TMJOA) is still unknown. Here, we first established a surgically induced TMJOA model by performing partial discectomy in discs of TMJ in mice. Further, we investigated the role of WNT16 during the initiation and progression of TMJOA. Our results showed that WNT16 expression is upregulated early at 4 weeks after initiation of osteoarthritis by partial discectomy in mouse TMJ cartilage, but decreased after 12 weeks post-surgery. Further cellular and molecular analyses revealed that WNT16 signals via both the canonical WNT/ß-catenin and non-canonical WNT/JNK-cJUN pathways, upregulates the expression of Lubricin and SOX9, and protects against IL-1ß induced inflammatory response by regulation of RUNX2/MMP13 cascade in fibrochondrocytes. In conclusion, WNT16 may play an important role in the early stage of TMJOA by regulating cartilage anabolic and catabolic factors, and may serve as novel therapeutic targets for TMJOA.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Condrócitos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Interleucina-1beta , Metaloproteinase 13 da Matriz , Camundongos , Articulação Temporomandibular , Proteínas Wnt
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa