Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.003
Filtrar
1.
Cell ; 182(1): 50-58.e8, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32516571

RESUMO

COVID-19 has spread worldwide since 2019 and is now a severe threat to public health. We previously identified the causative agent as a novel SARS-related coronavirus (SARS-CoV-2) that uses human angiotensin-converting enzyme 2 (hACE2) as the entry receptor. Here, we successfully developed a SARS-CoV-2 hACE2 transgenic mouse (HFH4-hACE2 in C3B6 mice) infection model. The infected mice generated typical interstitial pneumonia and pathology that were similar to those of COVID-19 patients. Viral quantification revealed the lungs as the major site of infection, although viral RNA could also be found in the eye, heart, and brain in some mice. Virus identical to SARS-CoV-2 in full-genome sequences was isolated from the infected lung and brain tissues. Last, we showed that pre-exposure to SARS-CoV-2 could protect mice from severe pneumonia. Our results show that the hACE2 mouse would be a valuable tool for testing potential vaccines and therapeutics.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/patologia , Modelos Animais de Doenças , Camundongos Transgênicos , Pneumonia Viral/patologia , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19 , Feminino , Humanos , Doenças Pulmonares Intersticiais/patologia , Doenças Pulmonares Intersticiais/virologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos/genética , Pandemias , Peptidil Dipeptidase A/genética , SARS-CoV-2 , Tropismo Viral , Redução de Peso
2.
Mol Cell ; 78(6): 1096-1113.e8, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32416067

RESUMO

BET bromodomain inhibitors (BBDIs) are candidate therapeutic agents for triple-negative breast cancer (TNBC) and other cancer types, but inherent and acquired resistance to BBDIs limits their potential clinical use. Using CRISPR and small-molecule inhibitor screens combined with comprehensive molecular profiling of BBDI response and resistance, we identified synthetic lethal interactions with BBDIs and genes that, when deleted, confer resistance. We observed synergy with regulators of cell cycle progression, YAP, AXL, and SRC signaling, and chemotherapeutic agents. We also uncovered functional similarities and differences among BRD2, BRD4, and BRD7. Although deletion of BRD2 enhances sensitivity to BBDIs, BRD7 loss leads to gain of TEAD-YAP chromatin binding and luminal features associated with BBDI resistance. Single-cell RNA-seq, ATAC-seq, and cellular barcoding analysis of BBDI responses in sensitive and resistant cell lines highlight significant heterogeneity among samples and demonstrate that BBDI resistance can be pre-existing or acquired.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Proteínas/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Azepinas/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
3.
Genes Dev ; 32(7-8): 512-523, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29632085

RESUMO

Glioblastoma is the most frequently occurring and invariably fatal primary brain tumor in adults. The vast majority of glioblastomas is characterized by chromosomal copy number alterations, including gain of whole chromosome 7 and loss of whole chromosome 10. Gain of whole chromosome 7 is an early event in gliomagenesis that occurs in proneural-like precursor cells, which give rise to all isocitrate dehydrogenase (IDH) wild-type glioblastoma transcriptional subtypes. Platelet-derived growth factor A (PDGFA) is one gene on chromosome 7 known to drive gliomagenesis, but, given its location near the end of 7p, there are likely several other genes located along chromosome 7 that select for its increased whole-chromosome copy number within glioblastoma cells. To identify other potential genes that could select for gain of whole chromosome 7, we developed an unbiased bioinformatics approach that identified homeobox A5 (HOXA5) as a gene whose expression correlated with gain of chromosome 7 and a more aggressive phenotype of the resulting glioma. High expression of HOXA5 in glioblastoma was associated with a proneural gene expression pattern and decreased overall survival in both human proneural and PDGF-driven mouse glioblastoma. Furthermore, HOXA5 overexpression promoted cellular proliferation and potentiated radioresistance. We also found enrichment of HOXA5 expression in recurrent human and mouse glioblastoma at first recurrence after radiotherapy. Overall, this study implicates HOXA5 as a chromosome 7-associated gene-level locus that promotes selection for gain of whole chromosome 7 and an aggressive phenotype in glioblastoma.


Assuntos
Neoplasias Encefálicas/genética , Cromossomos Humanos Par 7 , Glioblastoma/genética , Proteínas de Homeodomínio/metabolismo , Fosfoproteínas/metabolismo , Animais , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Proliferação de Células , Duplicação Cromossômica , Glioblastoma/mortalidade , Glioblastoma/patologia , Glioblastoma/radioterapia , Proteínas de Homeodomínio/genética , Humanos , Isocitrato Desidrogenase/genética , Camundongos , Recidiva Local de Neoplasia , Fosfoproteínas/genética , Tolerância a Radiação , Fatores de Transcrição
4.
Mol Psychiatry ; 29(5): 1453-1464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38321120

RESUMO

Smell deficits and neurobiological changes in the olfactory bulb (OB) and olfactory epithelium (OE) have been observed in schizophrenia and related disorders. The OE is the most peripheral olfactory system located outside the cranium, and is connected with the brain via direct neuronal projections to the OB. Nevertheless, it is unknown whether and how a disturbance of the OE affects the OB in schizophrenia and related disorders. Addressing this gap would be the first step in studying the impact of OE pathology in the disease pathophysiology in the brain. In this cross-species study, we observed that chronic, local OE inflammation with a set of upregulated genes in an inducible olfactory inflammation (IOI) mouse model led to a volume reduction, layer structure changes, and alterations of neuron functionality in the OB. Furthermore, IOI model also displayed behavioral deficits relevant to negative symptoms (avolition) in parallel to smell deficits. In first episode psychosis (FEP) patients, we observed a significant alteration in immune/inflammation-related molecular signatures in olfactory neuronal cells (ONCs) enriched from biopsied OE and a significant reduction in the OB volume, compared with those of healthy controls (HC). The increased expression of immune/inflammation-related molecules in ONCs was significantly correlated to the OB volume reduction in FEP patients, but no correlation was found in HCs. Moreover, the increased expression of human orthologues of the IOI genes in ONCs was significantly correlated with the OB volume reduction in FEP, but not in HCs. Together, our study implies a potential mechanism of the OE-OB pathology in patients with psychotic disorders (schizophrenia and related disorders). We hope that this mechanism may have a cross-disease implication, including COVID-19-elicited mental conditions that include smell deficits.


Assuntos
Modelos Animais de Doenças , Inflamação , Bulbo Olfatório , Mucosa Olfatória , Transtornos Psicóticos , Esquizofrenia , Animais , Mucosa Olfatória/patologia , Mucosa Olfatória/metabolismo , Transtornos Psicóticos/patologia , Camundongos , Humanos , Masculino , Inflamação/metabolismo , Inflamação/patologia , Bulbo Olfatório/patologia , Bulbo Olfatório/metabolismo , Feminino , Esquizofrenia/patologia , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Esquizofrenia/genética , Transtornos do Olfato/etiologia , Transtornos do Olfato/fisiopatologia , Olfato/fisiologia , Adulto , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia
5.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38365269

RESUMO

The aim of this paper is to investigate dynamical functional disturbance in central executive network in minimal hepatic encephalopathy and determine its association with metabolic disorder and cognitive impairment. Data of magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging were obtained from 27 cirrhotic patients without minimal hepatic encephalopathy, 20 minimal hepatic encephalopathy patients, and 24 healthy controls. Central executive network was identified utilizing seed-based correlation approach. Dynamic functional connectivity across central executive network was calculated using sliding-window approach. Functional states were estimated by K-means clustering. Right dorsolateral prefrontal cortex metabolite ratios (i.e. glutamate and glutamine complex/total creatine, myo-inositol / total creatine, and choline / total creatine) were determined. Neurocognitive performance was determined by psychometric hepatic encephalopathy scores. Minimal hepatic encephalopathy patients had decreased myo-inositol / total creatine and choline / total creatine and increased glutamate and glutamine complex / total creatine in right dorsolateral prefrontal cortex (all P ≤ 0.020); decreased static functional connectivity between bilateral dorsolateral prefrontal cortex and between right dorsolateral prefrontal cortex and lateral-inferior temporal cortex (P ≤ 0.001); increased frequency and mean dwell time in state-1 (P ≤ 0.001), which exhibited weakest functional connectivity. Central executive network dynamic functional indices were significantly correlated with right dorsolateral prefrontal cortex metabolic indices and psychometric hepatic encephalopathy scores. Right dorsolateral prefrontal cortex myo-inositol / total creatine and mean dwell time in state-1 yielded best potential for diagnosing minimal hepatic encephalopathy. Dynamic functional disturbance in central executive network may contribute to neurocognitive impairment and could be correlated with metabolic disorder.


Assuntos
Encefalopatia Hepática , Humanos , Encefalopatia Hepática/complicações , Encefalopatia Hepática/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Glutamina/metabolismo , Creatina/metabolismo , Cirrose Hepática/complicações , Cirrose Hepática/metabolismo , Ácido Glutâmico/metabolismo , Inositol/metabolismo , Colina/metabolismo , Encéfalo
6.
Nucleic Acids Res ; 51(18): 9552-9566, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37697433

RESUMO

Intrinsic DNA properties including bending play a crucial role in diverse biological systems. A recent advance in a high-throughput technology called loop-seq makes it possible to determine the bendability of hundred thousand 50-bp DNA duplexes in one experiment. However, it's still challenging to assess base-resolution sequence bendability in large genomes such as human, which requires thousands of such experiments. Here, we introduce 'BendNet'-a deep neural network to predict the intrinsic DNA bending at base-resolution by using loop-seq results in yeast as training data. BendNet can predict the DNA bendability of any given sequence from different species with high accuracy. To explore the utility of BendNet, we applied it to the human genome and observed DNA bendability is associated with chromatin features and disease risk regions involving transcription/enhancer regulation, DNA replication, transcription factor binding and extrachromosomal circular DNA generation. These findings expand our understanding on DNA mechanics and its association with transcription regulation in mammals. Lastly, we built a comprehensive resource of genomic DNA bendability profiles for 307 species by applying BendNet, and provided an online tool to assess the bendability of user-specified DNA sequences (http://www.dnabendnet.com/).

7.
J Neurosci ; 43(16): 2874-2884, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36948584

RESUMO

The hierarchically organized structures of the medial temporal lobe are critically important for episodic memory function. Accumulating evidence suggests dissociable information processing pathways are maintained throughout these structures including in the medial and lateral entorhinal cortex. Cortical layers provide an additional dimension of dissociation as the primary input to the hippocampus derives from layer 2 neurons in the entorhinal cortex, whereas the deeper layers primarily receive output from the hippocampus. Here, novel high-resolution T2-prepared functional MRI methods were successfully used to mitigate susceptibility artifacts typically affecting MRI signals in this region providing uniform sensitivity across the medial and lateral entorhinal cortex. During the performance of a memory task, healthy human subjects (age 25-33 years, mean age 28.2 ± 3.3 years, 4 female) showed differential functional activation in the superficial and deep layers of the entorhinal cortex associated with task-related encoding and retrieval conditions, respectively. The methods provided here offer an approach to probe layer-specific activation in normal cognition and conditions contributing to memory impairment.SIGNIFICANCE STATEMENT This study provides new evidence for differential neuronal activation in the superficial versus deep layers of the entorhinal cortex associated with encoding and retrieval memory processes, respectively, in cognitively normal adults. The study further shows that this dissociation can be observed in both the medial and the lateral entorhinal cortex. The study was achieved by using a novel functional MRI method allowing us to measure robust functional MRI signals in both the medial and lateral entorhinal cortex that was not possible in previous studies. The methodology established here in healthy human subjects lays a solid foundation for subsequent studies investigating layer-specific and region-specific changes in the entorhinal cortex associated with memory impairment in various conditions such as Alzheimer's disease.


Assuntos
Doença de Alzheimer , Memória Episódica , Adulto , Humanos , Feminino , Adulto Jovem , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/fisiologia , Lobo Temporal/fisiologia , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Transtornos da Memória
8.
Semin Cell Dev Biol ; 129: 22-30, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34462249

RESUMO

Olfactory dysfunction is often the earliest indicator of disease in a range of neurological and psychiatric disorders. One tempting working hypothesis is that pathological changes in the peripheral olfactory system where the body is exposed to many adverse environmental stressors may have a causal role for the brain alteration. Whether and how the peripheral pathology spreads to more central brain regions may be effectively studied in rodent models, and there is successful precedence in experimental models for Parkinson's disease. It is of interest to study whether a similar mechanism may underlie the pathology of psychiatric illnesses, such as schizophrenia. However, direct comparison between rodent models and humans includes challenges under light of comparative neuroanatomy and experimental methodologies used in these two distinct species. We believe that neuroimaging modality that has been the main methodology of human brain studies may be a useful viewpoint to address and fill the knowledge gap between rodents and humans in this scientific question. Accordingly, in the present review article, we focus on brain imaging studies associated with olfaction in healthy humans and patients with neurological and psychiatric disorders, and if available those in rodents. We organize this review article at three levels: 1) olfactory bulb (OB) and peripheral structures of the olfactory system, 2) primary olfactory cortical and subcortical regions, and 3) associated higher-order cortical regions. This research area is still underdeveloped, and we acknowledge that further validation with independent cohorts may be needed for many studies presented here, in particular those with human subjects. Nevertheless, whether and how peripheral olfactory disturbance impacts brain function is becoming even a hotter topic in the ongoing COVID-19 pandemic, given the risk of long-term changes of mental status associated with olfactory infection of SARS-CoV-2. Together, in this review article, we introduce this underdeveloped but important research area focusing on its implications in neurological and psychiatric disorders, with several pioneered publications.


Assuntos
COVID-19 , Transtornos do Olfato , Humanos , Neuroimagem/efeitos adversos , Transtornos do Olfato/diagnóstico por imagem , Transtornos do Olfato/etiologia , Transtornos do Olfato/patologia , Bulbo Olfatório/anatomia & histologia , Bulbo Olfatório/patologia , Pandemias , SARS-CoV-2 , Olfato
9.
Small ; 20(8): e2308045, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37828632

RESUMO

Nitrogen (N) doping of graphene with a three-dimensional (3D) porous structure, high flexibility, and low cost exhibits potential for developing metal-air batteries to power electric/electronic devices. The optimization of N-doping into graphene and the design of interconnected and monolithic graphene-based 3D porous structures are crucial for mass/ion diffusion and the final oxygen reduction reaction (ORR)/battery performance. Aqueous-type and all-solid-state primary Mg-air batteries using N-doped nanoporous graphene as air cathodes are assembled. N-doped nanoporous graphene with 50-150 nm pores and ≈99% porosity is found to exhibit a Pt-comparable ORR performance, along with satisfactory durability in both neutral and alkaline media. Remarkably, the all-solid-state battery exhibits a peak power density of 72.1 mW cm-2 ; this value is higher than that of a battery using Pt/carbon cathodes (54.3 mW cm-2 ) owing to the enhanced catalytic activity induced by N-doping and rapid air breathing in the 3D porous structure. Additionally, the all-solid-state battery demonstrates better performances than the aqueous-type battery owing to slow corrosion of the Mg anode by solid electrolytes. This study sheds light on the design of free-standing and catalytically active 3D nanoporous graphene that enhances the performance of both Mg-air batteries and various carbon-neutral-technologies using neutral electrolytes.

10.
Small ; 20(14): e2309014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37972262

RESUMO

Developing single-atomic catalysts with superior selectivity and outstanding stability for CO2 electroreduction is desperately required but still challenging. Herein, confinement strategy and three-dimensional (3D) nanoporous structure design strategy are combined to construct unsaturated single Ni sites (Ni-N3) stabilized by pyridinic N-rich interconnected carbon nanosheets. The confinement agent chitosan and its strong interaction with g-C3N4 nanosheet are effective for dispersing Ni and restraining their agglomeration during pyrolysis, resulting in ultrastable Ni single-atom catalyst. Due to the confinement effect and structure advantage, such designed catalyst exhibits a nearly 100% selectivity and remarkable stability for CO2 electroreduction to CO, exceeding most reported state-of-the-art catalysts. Specifically, the CO Faradaic efficiency (FECO) maintains above 90% over a broad potential range (-0.55 to -0.95 V vs. RHE) and reaches a maximum value of 99.6% at a relatively low potential of -0.67 V. More importantly, the FECO is kept above 95% within a long-term 100 h electrolyzing. Density functional theory (DFT) calculations explain the high selectivity for CO generation is due to the high energy barrier required for hydrogen evolution on the unsaturated Ni-N3. This work provides a new designing strategy for the construction of ultrastable and highly selective single-atom catalysts for efficient CO2 conversion.

11.
Magn Reson Med ; 91(5): 1893-1907, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38115573

RESUMO

PURPOSE: The inflow-based vascular-space-occupancy (iVASO) MRI was originally developed in a single-slice mode to measure arterial cerebral blood volume (CBVa). When vascular crushers are applied in iVASO, the signals can be sensitized predominantly to small pial arteries and arterioles. The purpose of this study is to perform a systematic optimization and evaluation of a 3D iVASO sequence on both 3 T and 7 T for the quantification of CBVa values in the human brain. METHODS: Three sets of experiments were performed in three separate cohorts. (1) 3D iVASO MRI protocols were compared to single-slice iVASO, and the reproducibility of whole-brain 3D iVASO MRI was evaluated. (2) The effects from different vascular crushers in iVASO were assessed. (3) 3D iVASO MRI results were evaluated in arterial and venous blood vessels identified using ultrasmall-superparamagnetic-iron-oxides-enhanced MRI to validate its arterial origin. RESULTS: 3D iVASO scans showed signal-to-noise ratio (SNR) and CBVa measures consistent with single-slice iVASO with reasonable intrasubject reproducibility. Among the iVASO scans performed with different vascular crushers, the whole-brain 3D iVASO scan with a motion-sensitized-driven-equilibrium preparation with two binomial refocusing pulses and an effective TE of 50 ms showed the best suppression of macrovascular signals, with a relatively low specific absorption rate. When no vascular crusher was applied, the CBVa maps from 3D iVASO scans showed large CBVa values in arterial vessels but well-suppressed signals in venous vessels. CONCLUSION: A whole-brain 3D iVASO MRI scan was optimized for CBVa measurement in the human brain. When only microvascular signals are desired, a motion-sensitized-driven-equilibrium-based vascular crusher with binomial refocusing pulses can be applied in 3D iVASO.


Assuntos
Volume Sanguíneo Cerebral , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Artérias
12.
Appl Environ Microbiol ; 90(5): e0004624, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38563787

RESUMO

Dietary fiber metabolism by gut microorganisms plays important roles in host physiology and health. Alginate, the major dietary fiber of daily diet seaweeds, is drawing more attention because of multiple biological activities. To advance the understanding of alginate assimilation mechanism in the gut, we show the presence of unsaturated alginate oligosaccharides (uAOS)-specific alginate utilization loci (AUL) in human gut microbiome. As a representative example, a working model of the AUL from the gut microorganism Bacteroides clarus was reconstructed from biochemistry and transcriptome data. The fermentation of resulting monosaccharides through Entner-Doudoroff pathway tunes the metabolism of short-chain fatty acids and amino acids. Furthermore, we show that uAOS feeding protects the mice against dextran sulfate sodium-induced acute colitis probably by remodeling gut microbiota and metabolome. IMPORTANCE: Alginate has been included in traditional Chinese medicine and daily diet for centuries. Recently discovered biological activities suggested that alginate-derived alginate oligosaccharides (AOS) might be an active ingredient in traditional Chinese medicine, but how these AOS are metabolized in the gut and how it affects health need more information. The study on the working mechanism of alginate utilization loci (AUL) by the gut microorganism uncovers the role of unsaturated alginate oligosaccharides (uAOS) assimilation in tuning short-chain fatty acids and amino acids metabolism and demonstrates that uAOS metabolism by gut microorganisms results in a variation of cell metabolites, which potentially contributes to the physiology and health of gut.


Assuntos
Alginatos , Microbioma Gastrointestinal , Oligossacarídeos , Alginatos/metabolismo , Oligossacarídeos/metabolismo , Camundongos , Animais , Humanos , Colite/microbiologia , Colite/induzido quimicamente , Camundongos Endogâmicos C57BL , Ácidos Graxos Voláteis/metabolismo , Inflamação/metabolismo , Sulfato de Dextrana , Fibras na Dieta/metabolismo
13.
Epilepsia ; 65(6): 1791-1800, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593237

RESUMO

OBJECTIVE: Sudden unexpected death in epilepsy (SUDEP) is an underestimated complication of epilepsy. Previous studies have demonstrated that enhancement of serotonergic neurotransmission suppresses seizure-induced sudden death in evoked seizure models. However, it is unclear whether elevated serotonin (5-HT) function will prevent spontaneous seizure-induced mortality (SSIM), which is characteristic of human SUDEP. We examined the effects of 5-HT-enhancing agents that act by three different pharmacological mechanisms on SSIM in Dravet mice, which exhibit a high incidence of SUDEP, modeling human Dravet syndrome. METHODS: Dravet mice of both sexes were evaluated for spontaneous seizure characterization and changes in SSIM incidence induced by agents that enhance 5-HT-mediated neurotransmission. Fluoxetine (a selective 5-HT reuptake inhibitor), fenfluramine (a 5-HT releaser and agonist), SR 57227 (a specific 5-HT3 receptor agonist), or saline (vehicle) was intraperitoneally administered over an 8-day period in Dravet mice, and the effect of these treatments on SSIM was examined. RESULTS: Spontaneous seizures in Dravet mice generally progressed from wild running to tonic seizures with or without SSIM. Fluoxetine at 30 mg/kg, but not at 20 or 5 mg/kg, significantly reduced SSIM compared with the vehicle control. Fenfluramine at 1-10 mg/kg, but not .2 mg/kg, fully protected Dravet mice from SSIM, with all mice surviving. Compared with the vehicle control, SR 57227 at 20 mg/kg, but not at 10 or 5 mg/kg, significantly lowered SSIM. The effect of these drugs on SSIM was independent of sex. SIGNIFICANCE: Our data demonstrate that elevating serotonergic function by fluoxetine, fenfluramine, or SR 57227 significantly reduces or eliminates SSIM in Dravet mice in a sex-independent manner. These findings suggest that deficits in serotonergic neurotransmission likely play an important role in the pathogenesis of SSIM, and fluoxetine and fenfluramine, which are US Food and Drug Administration-approved medications, may potentially prevent SUDEP in at-risk patients.


Assuntos
Epilepsias Mioclônicas , Fenfluramina , Fluoxetina , Convulsões , Inibidores Seletivos de Recaptação de Serotonina , Serotonina , Animais , Camundongos , Masculino , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Feminino , Epilepsias Mioclônicas/tratamento farmacológico , Fenfluramina/farmacologia , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Convulsões/etiologia , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Modelos Animais de Doenças , Morte Súbita Inesperada na Epilepsia/prevenção & controle , Agonistas do Receptor de Serotonina/farmacologia , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.1/genética
14.
Br J Anaesth ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38937217

RESUMO

BACKGROUND: Prior studies have reported inconsistent results regarding the association between driving pressure-guided ventilation and postoperative pulmonary complications (PPCs). We aimed to investigate whether driving pressure-guided ventilation is associated with a lower risk of PPCs. METHODS: We systematically searched electronic databases for RCTs comparing driving pressure-guided ventilation with conventional protective ventilation in adult surgical patients. The primary outcome was a composite of PPCs. Secondary outcomes were pneumonia, atelectasis, and acute respiratory distress syndrome (ARDS). Meta-analysis and subgroup analysis were conducted to calculate risk ratios (RRs) with 95% confidence intervals (CI). Trial sequential analysis (TSA) was used to assess the conclusiveness of evidence. RESULTS: Thirteen RCTs with 3401 subjects were included. Driving pressure-guided ventilation was associated with a lower risk of PPCs (RR 0.70, 95% CI 0.56-0.87, P=0.001), as indicated by TSA. Subgroup analysis (P for interaction=0.04) found that the association was observed in non-cardiothoracic surgery (nine RCTs, 1038 subjects, RR 0.61, 95% CI 0.48-0.77, P< 0.0001), with TSA suggesting sufficient evidence and conclusive result; however, it did not reach significance in cardiothoracic surgery (four RCTs, 2363 subjects, RR 0.86, 95% CI 0.67-1.10, P=0.23), with TSA indicating insufficient evidence and inconclusive result. Similarly, a lower risk of pneumonia was found in non-cardiothoracic surgery but not in cardiothoracic surgery (P for interaction=0.046). No significant differences were found in atelectasis and ARDS between the two ventilation strategies. CONCLUSIONS: Driving pressure-guided ventilation was associated with a lower risk of postoperative pulmonary complications in non-cardiothoracic surgery but not in cardiothoracic surgery. SYSTEMATIC REVIEW PROTOCOL: INPLASY 202410068.

15.
Eur J Pediatr ; 183(4): 1901-1910, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38337095

RESUMO

The aim of the study was to determine the relationship between flatfoot morphology and body mass and height in children aged 6-12 years. A total of 6471 Chinese children (mean age 9.0 ± 1.9 years, 41% female) were assessed for foot morphometry, body height, and body mass index. Foot morphology, including foot length, width, girth, arch height, hallux valgus angle, and rearfoot valgus angle, was measured using a 3D laser scanner. Flatfoot evaluations were conducted using the Sztriter-Godunov index (KY) from footprints. All measurements were analyzed by age and sex using the mean values of the left and right sides. Comparisons were performed between flatfoot groups, between body mass index (BMI) groups, and between body height groups. The study revealed a significant decrease in the incidence of bipedal flatfoot with age (p < 0.001), whereas the prevalence of obesity remained consistent (p > 0.05). Bipedal flatfoot was associated with distinct morphological changes, including lower arches, reduced instep height, diminished ankle heights and a greater rearfoot valgus angle (p < 0.05). When comparing the BMI groups, overweight children had larger and thicker feet (p < 0.05), but no differences were found in arch height and ankle height (p > 0.05). When comparing the body height groups, short-statured children had a shorter feet girth, shorter arches, and shorter ankle height (p < 0.05), but no differences were found in the rearfoot valgus angle (p > 0.05). CONCLUSION: The main characteristics of flat feet include lower arches and instep heights and ankle heights but higher rearfoot valgus angles. In general, overweight children's feet do not have the common features of flat feet. In contrast, short children had similar features of flatfoot except for rearfoot valgus. Assessment of posture, such as rearfoot valgus, can be critical in identifying children with flat feet. WHAT IS KNOWN: • The morphology of children's feet is associated with body growth, but the relationship between flatfeet and body mass and height remains controversial. WHAT IS NEW: • Three-dimensional foot measurement shows that body mass is generally not associated with flatfeet, while short children have lower arches but no rearfoot valgus.


Assuntos
Pé Chato , Criança , Humanos , Feminino , Masculino , Pé Chato/epidemiologia , Pé Chato/complicações , Sobrepeso , Estatura , Pé/anatomia & histologia , Obesidade/complicações
16.
Biomed Chromatogr ; 38(1): e5763, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858975

RESUMO

Alisol B 23-acetate (AB23A) has been demonstrated to have beneficial effects on nonalcoholic steatohepatitis (NASH). However, the mechanisms of AB23A on NASH remain unclear. This study aimed to investigate the mechanisms underlying the metabolic regulatory effects of AB23A on NASH. We used AB23A to treat mice with NASH, which was induced by a methionine and choline deficient (MCD) diet. We initially investigated therapeutic effect and resistance to oxidation and inflammation of AB23A on NASH. Subsequently, we performed untargeted metabolomic analyses and relative validation assessments to evaluate the metabolic regulatory effects of AB23A. AB23A reduced lipid accumulation, ameliorated oxidative stress and decreased pro-inflammatory cytokines in the liver. Untargeted metabolomic analysis found that AB23A altered the metabolites of liver. A total of 55 differential metabolites and three common changed pathways were screened among the control, model and AB23A treatment groups. Further tests validated the effects of AB23A on modulating common changed pathway-involved factors. AB23A treatment can ameliorate NASH by inhibiting oxidative stress and inflammation. The mechanism of AB23A on NASH may be related to the regulation of alanine, aspartate and glutamate metabolism, d-glutamine and d-glutamate metabolism, and arginine biosynthesis pathways.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metionina/metabolismo , Metionina/farmacologia , Colina , Fígado/metabolismo , Racemetionina/metabolismo , Racemetionina/farmacologia , Dieta , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
17.
Nano Lett ; 23(22): 10554-10562, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37916621

RESUMO

Nanoporous high-entropy oxide (np-HEO) powders with tunable composition are integrated with a poly(vinylidene fluoride) network to create self-floating solar absorber films for seawater desalination. By progressively increasing the element count, we obtain an optimized 9-component AlNiCoFeCrMoVCuTi-Ox. Density functional theory (DFT) calculations reveal a remarkable reduction in its bandgap, facilitating the light-induced migration of electrons to conduction bands to generate electron-hole pairs, which recombine to produce heat. Simultaneously, the intricate light reflection and refraction pathways, shaped by the nanoporous structure, coupled with the reduced thermal conductivity attributed to the suboptimal crystalline quality of the np-HEO ensure an effective conversion of captured light into thermal energy. Consequently, all these films demonstrate an impressive absorbance rate exceeding 93% across the 250-2500 nm spectral range. Under one sun, the surface temperature of the 9-component film rapidly rises to 110 °C within 90 s with a high pure water evaporation rate of 2.16 kg m-2 h-1.

18.
J Infect Dis ; 228(11): 1559-1570, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37540098

RESUMO

BACKGROUND: The aim of this study was to determine whether neurometabolite abnormalities indicating neuroinflammation and neuronal injury are detectable in individuals post-coronavirus disease 2019 (COVID-19) with persistent neuropsychiatric symptoms. METHODS: All participants were studied with proton magnetic resonance spectroscopy at 3 T to assess neurometabolite concentrations (point-resolved spectroscopy, relaxation time/echo time = 3000/30 ms) in frontal white matter (FWM) and anterior cingulate cortex-gray matter (ACC-GM). Participants also completed the National Institutes of Health Toolbox cognition and motor batteries and selected modules from the Patient-Reported Outcomes Measurement Information System. RESULTS: Fifty-four participants were evaluated: 29 post-COVID-19 (mean ± SD age, 42.4 ± 12.3 years; approximately 8 months from COVID-19 diagnosis; 19 women) and 25 controls (age, 44.1 ± 12.3 years; 14 women). When compared with controls, the post-COVID-19 group had lower total N-acetyl compounds (tNAA; ACC-GM: -5.0%, P = .015; FWM: -4.4%, P = .13), FWM glutamate + glutamine (-9.5%, P = .001), and ACC-GM myo-inositol (-6.2%, P = .024). Additionally, only hospitalized patients post-COVID-19 showed age-related increases in myo-inositol, choline compounds, and total creatine (interaction P = .029 to <.001). Across all participants, lower FWM tNAA and higher ACC-GM myo-inositol predicted poorer performance on several cognitive measures (P = .001-.009), while lower ACC-GM tNAA predicted lower endurance on the 2-minute walk (P = .005). CONCLUSIONS: In participants post-COVID-19 with persistent neuropsychiatric symptoms, the lower-than-normal tNAA and glutamate + glutamine indicate neuronal injury, while the lower-than-normal myo-inositol reflects glial dysfunction, possibly related to mitochondrial dysfunction and oxidative stress in Post-COVID participants with persistent neuropsychiatric symptoms.


Assuntos
COVID-19 , Glutamina , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Espectroscopia de Prótons por Ressonância Magnética/métodos , Glutamina/metabolismo , Prótons , Teste para COVID-19 , COVID-19/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Inositol/metabolismo , Glutamatos/metabolismo , Ácido Aspártico/metabolismo
19.
Biochem Biophys Res Commun ; 675: 113-121, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467664

RESUMO

The recent outbreak of Corona Virus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a severe threat to the global public health and economy, however, effective drugs to treat COVID-19 are still lacking. Here, we employ a deep learning-based drug repositioning strategy to systematically screen potential anti-SARS-CoV-2 drug candidates that target the cell entry mechanism of SARS-CoV-2 virus from 2635 FDA-approved drugs and 1062 active ingredients from Traditional Chinese Medicine herbs. In silico molecular docking analysis validates the interactions between the top compounds and host receptors or viral spike proteins. Using a SARS-CoV-2 pseudovirus system, we further identify several drug candidates including Fostamatinib, Linagliptin, Lysergol and Sophoridine that can effectively block the cell entry of SARS-CoV-2 variants into human lung cells even at a nanomolar scale. These efforts not only illuminate the feasibility of applying deep learning-based drug repositioning for antiviral agents by targeting a specified mechanism, but also provide a valuable resource of promising drug candidates or lead compounds to treat COVID-19.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , SARS-CoV-2 , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Internalização do Vírus , Antivirais/farmacologia
20.
BMC Plant Biol ; 23(1): 2, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36588160

RESUMO

BACKGROUND: Methane (CH4) and brassinosteroids (BRs) are important signaling molecules involved in a variety of biological processes in plants. RESULTS: Here, marigold (Tagetes erecta L. 'Marvel') was used to investigate the role and relationship between CH4 and BRs during adventitious root (AR) formation. The results showed a dose-dependent effect of CH4 and BRs on rooting, with the greatest biological effects of methane-rich water (MRW, CH4 donor) and 2,4-epibrassinolide (EBL) at 20% and 1 µmol L- 1, respectively. The positive effect of MRW on AR formation was blocked by brassinoazole (Brz, a synthetic inhibitor of EBL), indicating that BRs might be involved in MRW-regulated AR formation. MRW promoted EBL accumulation during rooting by up-regulating the content of campestanol (CN), cathasterone (CT), and castasterone (CS) and the activity of Steroid 5α-reductase (DET2), 22α-hydroxylase (DWF4), and BR-6-oxidase (BR6ox), indicating that CH4 could induce endogenous brassinolide (BR) production during rooting. Further results showed that MRW and EBL significantly down-regulated the content of cellulose, hemicellulose and lignin during rooting and significantly up-regulated the hydrolase activity, i.e. cmcase, xylanase and laccase. In addition, MRW and EBL also significantly promoted the activity of two major cell wall relaxing factors, xyloglucan endotransglucosylase/hydrolase (XTH) and peroxidase, which in turn promoted AR formation. While, Brz inhibited the role of MRW on these substances. CONCLUSIONS: BR might be involved in CH4-promoted AR formation by increasing cell wall relaxation.


Assuntos
Brassinosteroides , Celulose , Brassinosteroides/farmacologia , Metano/farmacologia , Hidrolases , Raízes de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa