Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0293878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38236831

RESUMO

In this paper, we introduce a novel Maximum Power Point Tracking (MPPT) controller for standalone Wind Energy Conversion Systems (WECS) with Permanent Magnet Synchronous Generators (PMSG). The primary novelty of our controller lies in its implementation of an Arbitrary Order Sliding Mode Control (AOSMC) to effectively overcome the challenges caused by the measurement noise in the system. The considered model is transformed into a control-convenient input-output form. Additionally, we enhance the control methodology by simultaneously incorporating Feedforward Neural Networks (FFNN) and a high-gain differentiator (HGO), further improving the system performance. The FFNN estimates critical nonlinear functions, such as the drift term and input channel, whereas the HGO estimates higher derivatives of the system outputs, which are subsequently fed back to the control inputs. HGO reduces sensor noise sensitivity, rendering the control law more practical. To validate the proposed novel control technique, we conduct comprehensive simulation experiments compared against established literature results in a MATLAB environment, confirming its exceptional effectiveness in maximizing power extraction in standalone wind energy applications.


Assuntos
Modelos Teóricos , Vento , Simulação por Computador , Redes Neurais de Computação , Imãs
2.
ISA Trans ; 154: 268-284, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39379251

RESUMO

The energy optimization in smart power grids (SPGs) is crucial for ensuring efficient, sustainable, and cost-effective energy management. However, the uncertainty and stochastic nature of distributed generations (DGs) and loads pose significant challenges to optimization models. In this study, we propose a novel optimization model that addresses these challenges by employing a probabilistic method to model the uncertain behavior of DGs and loads. Our model utilizes the multi-objective wind-driven optimization (MOWDO) technique with fuzzy mechanism to simultaneously address economic, environmental, and comfort concerns in SPGs. Unlike existing models, our approach incorporates a hybrid demand response (HDR), combining price-based and incentive-based DR to mitigate rebound peaks and ensure stable and efficient energy usage. The model also introduces battery energy storage systems (BESS) as environmentally friendly backup sources, reducing reliance on fossil fuels and promoting sustainability. We assess the developed model across various distinct configurations: optimizing operational costs and pollution emissions independently with/without DR, optimizing both operational costs and pollution emissions concurrently with/without DR, and optimizing operational costs, user comfort, and pollution emissions simultaneously with/without DR. The experimental findings reveal that the developed model performs better than the multi-objective bird swarm optimization (MOBSO) algorithm across metrics, including operational cost, user comfort, and pollution emissions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa