Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 67(4): e2200363, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36537853

RESUMO

SCOPE: Tea is a popular beverage worldwide and has many health functions. Protocatechuic acid (PCA) is an important bioactive component of tea and has benefit to health. In some cases, oocytes after ovulation may miss the optimal fertilization time and enter a postovulatory ageing process. Therefore, to investigate the role of PCA in delaying oocyte ageing is aimed. METHODS AND RESULTS: Metaphase II (MII) oocytes aged in vitro are randomly divided into three groups: control, aged, and aged + PCA. PCA treatment (30 µM) reduces the fragmentation rate and the incidence of abnormal spindle morphology and chromosome misalignment of oocytes aged 24 h in vitro. The mitochondrial dysfunction of aged oocytes, such as decreased mitochondrial membrane potential and excessive accumulation of reactive oxygen (ROS), is also alleviated by PCA. PCA also delays apoptosis of aged oocytes, and improves the sperm binding capacity. Otherwise, aged oocytes treated with PCA have a higher fertilization rate and blastocyst rate compared with untreated aged oocytes in vitro. CONCLUSION: PCA is an important bioactive ingredient of tea that improves aged oocyte quality, suggesting that PCA is available to improve the quality of aged oocytes in vitro.


Assuntos
Envelhecimento , Sêmen , Feminino , Masculino , Animais , Camundongos , Oócitos/metabolismo , Chá/metabolismo
2.
Biomed Pharmacother ; 159: 114267, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36669363

RESUMO

BACKGROUND: Maternal diabetes compromises the quality and developmental potential of oocytes. Therefore, it is important to study how to ameliorate the adverse effects of diabetes on oocyte quality. Epigallocatechin gallate (EGCG) has a variety of physiological activities, including anti-inflammatory, antioxidant, and anti-diabetes. In the present study, we evaluated the effect of EGCG on the maturation of diabetic oocytes in vitro. OBJECTIVE: Investigating the role of EGCG in restoring the adverse effects of diabetes on oocyte quality. METHODS: Diabetes mouse model was established by a single injection of streptozotocin (STZ). Oocytes were collected and matured in vitro with/without EGCG in M16 medium. RESULTS: Compared with control, diabetic oocytes have a higher frequency of spindle defects and chromosome misalignment, but EGCG effectively reduces the incidence of oocytes with abnormal spindle assembly and chromosome mismatches. Moreover, the abnormal mitochondrial membrane potential (MMP) of diabetic oocytes is significantly alleviated by EGCG, and the reduced expression of genes regulating mitochondrial fusion (Mfn1 and Mfn2) and fission (Drp1) in diabetic oocytes is significantly increased while EGCG is added. EGCG also decreases the higher level of reactive oxygen species (ROS) in diabetic oocytes that may be regulated by the increased expression of superoxide dismutase 1 (Sod1) and superoxide dismutase 2 (Sod2). EGCG can also reduce the DNA damage of diabetic oocytes. CONCLUSIONS: Our results suggest that EGCG, at least partially, improve the quality of diabetic oocytes.


Assuntos
Catequina , Diabetes Gestacional , Camundongos , Feminino , Humanos , Gravidez , Animais , Oócitos , Antioxidantes/farmacologia , Catequina/farmacologia
3.
Andrology ; 10(8): 1687-1701, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116016

RESUMO

BACKGROUND: Human sperm concentration and motility have dropped dramatically (50%) in the past few decades, and environmental factors are involved in this decline. Long non-coding RNAs (lncRNA) have been discovered to be involved in many cellular processes including spermatogenesis. OBJECTIVE: This investigation aimed to explore the role of lncRNA8276 in murine spermatogenesis. MATERIALS AND METHODS: The expression of lncRNA8276 was modified by knockdown or overexpression in mouse testes and spermatogonial stem cells (C18-4 cell line). Sperm quality was determined in the F0 and F1 generations of mice. Furthermore, the underlying mechanisms were studied through gene expression and/or protein expression of spermatogenesis-related genes and cell junction-related genes by different methods. RESULTS: In the current investigation, we discovered that sperm lncRNA8276 was decreased by NH3 /H2 S in three generations (F0, F1, and F2) of mouse sperm. In vivo testicular knockdown of lncRNA8276 led to a decline in sperm concentration and motility in both F0 (muF0) and F1 (muF1) generations Moreover, knockdown lncRNA8276 decreased the gene and protein levels of important genes related to cell-cell junctions and spermatogenesis. The data were further confirmed in mouse spermatogonia stem cell line C18-4 cells through knockdown of lncRNA8276. DISCUSSION AND CONCLUSION: Our study suggests that lncRNA8276 may be involved in cell-cell junction formation in the mouse testis to regulate spermatogenesis. It may be a target for the modification of spermatogenesis and male fertility, or male contraception. This investigation offers a potential therapeutic strategy for male infertility.


Assuntos
Adesão Celular , RNA Longo não Codificante , Espermatogênese , Animais , Adesão Celular/genética , Humanos , Masculino , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sêmen , Espermatogênese/genética , Espermatogônias , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa