Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(1): e202310811, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37953675

RESUMO

With the sharp rise of antibiotic-resistant pathogens worldwide, it is of enormous importance to create new strategies for combating pathogenic bacteria. Here, we create an iron oxide-based spiky artificial peroxidase (POD) with V-O-Fe pair sites (V-Fe2 O3 ) for combating methicillin-resistant Staphylococcus aureus (MRSA). The experimental studies and theoretical calculations demonstrate that the V-Fe2 O3 can achieve the localized "capture and killing" bifunction from the spiky morphology and massive reactive oxygen species (ROS) production. The V-Fe2 O3 can reach nearly 100 % bacterial inhibition over a long period by efficiently oxidizing the lipid membrane. Our wound disinfection results identify that the V-Fe2 O3 can not only efficiently eliminate MRSA and their biofilm but also accelerate wound recovery without causing noticeable inflammation and toxicity. This work offers essential insights into the critical roles of V-O-Fe pair sites and localized "capture and killing" in biocatalytic disinfection and provides a promising pathway for the de novo design of efficient artificial peroxidases.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Peroxidases , Biofilmes
2.
ACS Nano ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39263719

RESUMO

Overuse of antibiotics leads to the proliferation of drug-resistant bacterial strains, worsening global morbidity, and mortality rates. Bioinspired nanomaterials present a promising avenue for developing nonantibiotic strategies against drug-resistant bacteria. Here, we engineer a bacteriophage-inspired artificial nanobiocatalyst via nonstoichiometric W18O49 that features a spiky topography and synergistic dual-atom sites for combating drug-resistant bacterial infection. Benefiting from the strong interaction within the synergistic Fe-O-Mo sites, the synthesized spiky artificial nanobiocatalyst exhibits superior reactive oxygen species (ROS)-catalytic activity, attributed to the regulated adsorption affinity between the reaction intermediates and catalytic sites. The experimental and theoretical investigations demonstrate that the bioinspired biocatalyst can effectively capture and kill bacteria through its spiky morphology and potent ROS-catalytic activity, which can enable a significant reduction in bacterial viability through downregulating genes associated with biosynthesis, cellular maintenance, and respiration. In vivo experiments demonstrate that the spiky artificial biocatalyst accelerates the reconstruction of drug-resistant bacteria-infected skin wounds in rabbits, exhibiting efficacy comparable to that of vancomycin. It is expected that this bioinspired study on spiky artificial nanobiocatalysts offers a straightforward path to facilitate the development of both bionic and nonantibiotic disinfection strategies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa