Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(43): e2404709121, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39423241

RESUMO

As catabolic enzyme, CD73 dephosphorylates adenosine monophosphate (AMP) and can also regulate tumor cell proliferation and metastasis. To date, very few studies have explored the role of CD73 in mediating non-small cell lung cancer (NSCLC) metastasis, and the underlying transducing signal has not been elucidated. In the present study, we demonstrated that the CD73/Axl axis could regulate Smad3-induced epithelial-to-mesenchymal transition (EMT) to promote NSCLC metastasis. Mechanically, CD73 can be secreted via the Golgi apparatus transport pathway. Then secreted CD73 may activate AXl by directly bind with site R55 located in Axl extracellular domain independently of GAS6. In addition, we proved that CD73 can stabilize Axl expression via inhibiting CBLB expression. We also identified the distinct function of CD73 activity in adenocarcinoma and squamous cell carcinoma. Our findings indicated a role of CD73 in mediating NSCLC metastasis and propose it as a therapeutic target for NSCLC.


Assuntos
5'-Nucleotidase , Receptor Tirosina Quinase Axl , Carcinoma Pulmonar de Células não Pequenas , Transição Epitelial-Mesenquimal , Proteínas Ligadas por GPI , Peptídeos e Proteínas de Sinalização Intercelular , Neoplasias Pulmonares , Metástase Neoplásica , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Transdução de Sinais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , 5'-Nucleotidase/metabolismo , 5'-Nucleotidase/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Linhagem Celular Tumoral , Animais , Camundongos , Proteína Smad3/metabolismo , Proteína Smad3/genética , Regulação Neoplásica da Expressão Gênica
2.
Artigo em Inglês | MEDLINE | ID: mdl-39236286

RESUMO

The role of circRNAs in sepsis-induced lung injury is not clear. This study investigated the role and molecular mechanism of a novel circRNA in sepsis-induced lung injury and explored its prognostic value in sepsis patients. In this study, aberrant circRNA expression profiling in lung tissues from mice with sepsis-induced lung injury was analyzed using high-throughput sequencing. CircRNA-Cacna1d was verified by quantitative real-time polymerase chain reaction, and its biological function in sepsis-induced lung injury was validated in vitro and in vivo. The interactions among circRNA-Cacna1d, miRNAs, and their downstream genes were verified. Furthermore, the clinical value of circRNA-Cacna1d in peripheral blood from sepsis patients was also evaluated. We found that circRNA-Cacna1d expression was significantly increased in lung tissues of sepsis mice and microvascular endothelial cells after lipopolysaccharide (LPS) challenge. CircRNA-Cacna1d knockdown alleviated inflammatory response and ameliorated the permeability of vascular endothelium, thereby mitigating sepsis-induced lung injury and significantly improving the survival rate of sepsis mice. Mechanistically, circRNA-Cacna1d directly interacted with miRNA-185-5p and functioned as a miRNA sponge to regulate the RhoA/ROCK1 signaling pathway. The expression level of circRNA-Cacna1d in patients with early sepsis was significantly higher than that in the healthy controls. Higher levels of circRNA-Cacna1d in sepsis patients were associated with increased disease severity and poorer outcomes. In conclusions, circRNA-Cacna1d may play a role in sepsis-induced lung injury by regulating the RhoA/ROCK1 axis by acting as miRNA-185-5p sponge. CircRNA-Cacna1d is a potential therapeutic target for sepsis-induced lung injury and a prognostic biomarker in sepsis.

3.
J Am Chem Soc ; 146(40): 27701-27712, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39331404

RESUMO

The electrochemical reduction of CO2 in acidic media offers the advantage of high carbon utilization, but achieving high selectivity to C2+ products at a low overpotential remains a challenge. We identified the chemical instability of oxide-derived Cu catalysts as a reason that advances in neutral/alkaline electrolysis do not translate to acidic conditions. In acid, Cu ions leach from Cu oxides, leading to the deactivation of the C2+-active sites of Cu nanoparticles. This prompted us to design acid-stable Cu cluster precatalysts that are reduced in situ to active Cu nanoparticles in strong acid. Operando Raman and X-ray spectroscopy indicated that the bonding between the Cu cluster precatalyst ligand and in situ formed Cu nanoparticles preserves a high density of undercoordinated Cu sites, resulting in a C2H4 Faradaic efficiency of 62% at a low overpotential. The result is a 1.4-fold increase in energy efficiency compared with previous acidic CO2-to-C2+ electrocatalytic systems.

4.
J Am Chem Soc ; 146(12): 8641-8649, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470826

RESUMO

Renewable-energy-powered electrosynthesis has the potential to contribute to decarbonizing the production of propylene glycol, a chemical that is used currently in the manufacture of polyesters and antifreeze and has a high carbon intensity. Unfortunately, to date, the electrooxidation of propylene under ambient conditions has suffered from a wide product distribution, leading to a low faradic efficiency toward the desired propylene glycol. We undertook mechanistic investigations and found that the reconstruction of Pd to PdO occurs, followed by hydroxide formation under anodic bias. The formation of this metastable hydroxide layer arrests the progressive dissolution of Pd in a locally acidic environment, increases the activity, and steers the reaction pathway toward propylene glycol. Rh-doped Pd further improves propylene glycol selectivity. Density functional theory (DFT) suggests that the Rh dopant lowers the energy associated with the production of the final intermediate in propylene glycol formation and renders the desorption step spontaneous, a concept consistent with experimental studies. We report a 75% faradic efficiency toward propylene glycol maintained over 100 h of operation.

5.
Anal Chem ; 96(24): 9834-9841, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38832651

RESUMO

Complexed and tiresome pretreatment processes have significantly impeded in-field analysis of environmental specimens. Herein, an all-in-one sample separation and enrichment strategy based on a compact charge-selective capture/nanoconfined enrichment (CSC/NCE) device is exploited for marker-free surface-enhanced Raman spectroscopy (SERS) detection of charged pesticides in matrix specimens. This tactic incorporating in situ separations, seizing, and nanoconfined enhancement can greatly elevate the effectiveness of sample pretreatment. Importantly, CSC/NCE with excellent adsorption performances and excellent plasmonic features facilitates concentration and signal amplification of electrically charged pesticides. With the introduction of an electric field on this integrated CSC/NCE, the matrix effect in samples could be significantly eradicated, and a distinct SERS response is witnessed for targeted analytes. Accurate quantification of multipesticides is achieved by synergizing the CSC/NCE chip and chemometrics, and the contents found by the CSC/NCE-based sensing strategy agree with those obtained from chromatography assays with relative deviations lower than 10%. The facile and versatile all-in-one tactic infused in a compact chip exhibits enormous potential for field-test application in chemical measurement and food safety.


Assuntos
Praguicidas , Análise Espectral Raman , Praguicidas/análise , Miniaturização , Nanopartículas Metálicas/química , Propriedades de Superfície
6.
Anal Chem ; 96(21): 8566-8575, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38748451

RESUMO

Unraveling bacterial identity through Raman scattering techniques has been persistently challenging due to homogeneously amplified Raman signals across a wide variety of bacterial molecules, predominantly protein- or nucleic acid-mediated. In this study, we present an approach involving the use of silver nanoparticles to completely and uniformly "mask" adsorption on the surface of bacterial molecules through sodium borohydride and sodium chloride. This approach enables the acquisition of enhanced surface-enhanced Raman scattering (SERS) signals from all components on the bacterial surface, facilitating rapid, specific, and label-free bacterial identification. For the first time, we have characterized the identity of a bacterium, including its DNA, metabolites, and cell walls, enabling the accurate differentiation of various bacterial strains, even within the same species. In addition, we embarked on an exploration of the origin and variability patterns of the main characteristic peaks of Gram-positive and Gram-negative bacteria. Significantly, the SERS peak ratio was found to determine the inflection point of accelerated bacterial death upon treatment with antimicrobials. We further applied this platform to identify 15 unique clinical antibiotic-resistant bacterial strains, including five Escherichia coli strains in human urine, a first for Raman technology. This work has profound implications for prompt and accurate identification of bacteria, particularly antibiotic-resistant strains, thereby significantly enhancing clinical diagnostics and antimicrobial treatment strategies.


Assuntos
Nanopartículas Metálicas , Prata , Análise Espectral Raman , Análise Espectral Raman/métodos , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/análise , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/química , Humanos
7.
Small ; 20(43): e2402743, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38940401

RESUMO

Two challenges should be overcome for the ultra-precision machining of micro-optical element with freeform curved surface: one is the intricate geometry, the other is the hard-to-machining optical materials due to their hardness, brittleness or flexibility. Here scanning electrochemical probe lithography (SECPL) is developed, not only to meet the machining need of intricate geometry by 3D direct writing, but also to overcome the above mentioned mechanical properties by an electrochemical material removal mode. Through the electrochemical probe a localized anodic voltage is applied to drive the localized corrosion of GaAs. The material removal rate is obtained as a function of applied voltage, motion rate, scan segment, etc. Based on the material removal function, an arbitrary geometry can be converted to a spatially distributed voltage. Thus, a series of micro-optical element are fabricated with a machining accuracy in the scale of 100 s of nanometers. Notably, the spiral phase plate shows an excellent performance to transfer parallel light to vortex beam. SECPL demonstrates its excellent controllability and accuracy for the ultra-precision machining of micro-optical devices with freeform curved surface, providing an alternative chemical approach besides the physical and mechanical techniques.

8.
Int Arch Allergy Immunol ; 185(7): 631-640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527438

RESUMO

INTRODUCTION: Demethylzeylasteral (T-96), a new extract of Tripterygium wilfordii Hook F, exerted immunomodulatory properties in autoimmune diseases, but its effect on airway inflammatory diseases remains unclear. Our study aims to explore the protective effect and underlying mechanism of T-96 in allergic asthma. METHODS: The OVA-induced asthmatic mice were administered by gavage with T-96 (0.1 mg/10 g, 0.3 mg/10 g, or 0.6 mg/10 g) 1 h before each challenge. The airway hyperresponsiveness was assessed, pathological changes were evaluated by HE and PAS staining, and expressions of Th2 cytokines were determined by PCR and ELISA. The activation of MAPK/ERK and NF-κB pathway was assessed by western blot. RESULTS: T-96 significantly relieved airway hyperresponsiveness in asthmatic mice, evidenced by reduced airway resistance (Raw) and increased lung compliance dynamic compliance (Cdyn). Also, enhanced inflammatory infiltration and mucus hypersecretion were ameliorated in lungs of asthmatic mice following increasing doses of T-96 treatment, accompanied by decreased eosinophils in bronchoalveolar lavage fluid (BALF), IgE and OVA-specific IgE levels in serum, and downregulated IL-5 and IL-13 expressions in BALF and lung tissues as well. Notably, phosphorylation levels of p38 MAPK, ERK, and p65 NF-κB were obviously increased in asthmatic mice compared with the control group, which were then abrogated upon T-96 treatment. CONCLUSION: This study first revealed that T-96 alleviated allergic airway inflammation and airway hyperresponsiveness via inhibiting MAPK/ERK and NF-κB pathway. Thus, T-96 could potentially act as a new anti-inflammatory agent in allergic asthma.


Assuntos
Asma , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases , NF-kappa B , Animais , Asma/tratamento farmacológico , Asma/imunologia , NF-kappa B/metabolismo , Camundongos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Transdução de Sinais/efeitos dos fármacos , Antiasmáticos/uso terapêutico , Antiasmáticos/farmacologia , Imunoglobulina E/sangue , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia
9.
Cell Mol Biol Lett ; 29(1): 106, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095708

RESUMO

BACKGROUND: The RNA N6-methyladenosine (m6A) modification has become an essential hotspot in epigenetic modulation. Serine-arginine protein kinase 1 (SRPK1) is associated with the pathogenesis of various cancers. However, the m6A modification of SRPK1 and its association with the mechanism of in lung adenocarcinoma (LUAD) remains unclear. METHODS: Western blotting and polymerase chain reaction (PCR) analyses were carried out to identify gene and protein expression. m6A epitranscriptomic microarray was utilized to the assess m6A profile. Loss and gain-of-function assays were carried out elucidate the impact of METTL3 and SRPK1 on LUAD glycolysis and tumorigenesis. RNA immunoprecipitation (RIP), m6A RNA immunoprecipitation (MeRIP), and RNA stability tests were employed to elucidate the SRPK1's METTL3-mediated m6A modification mechanism in LUAD. Metabolic quantification and co-immunoprecipitation assays were applied to investigate the molecular mechanism by which SRPK1 mediates LUAD metabolism. RESULTS: The epitranscriptomic microarray assay revealed that SRPK1 could be hypermethylated and upregulated in LUAD. The main transmethylase METTL3 was upregulated and induced the aberrant high m6A levels of SRPK1. Mechanistically, SRPK1's m6A sites were directly methylated by METTL3, which also stabilized SRPK1 in an IGF2BP2-dependent manner. Methylated SRPK1 subsequently promoted LUAD progression through enhancing glycolysis. Further metabolic quantification, co-immunoprecipitation and western blot assays revealed that SRPK1 interacts with hnRNPA1, an important modulator of PKM splicing, and thus facilitates glycolysis by upregulating PKM2 in LUAD. Nevertheless, METTL3 inhibitor STM2457 can reverse the above effects in vitro and in vivo by suppressing SRPK1 and glycolysis in LUAD. CONCLUSION: It was revealed that in LUAD, aberrantly expressed METTL3 upregulated SRPK1 levels via an m6A-IGF2BP2-dependent mechanism. METTL3-induced SRPK1 fostered LUAD cell proliferation by enhancing glycolysis, and the small-molecule inhibitor STM2457 of METTL3 could be an alternative novel therapeutic strategy for individuals with LUAD.


Assuntos
Adenocarcinoma de Pulmão , Adenosina , Glicólise , Neoplasias Pulmonares , Metiltransferases , Proteínas Serina-Treonina Quinases , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Glicólise/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Animais , Regulação Neoplásica da Expressão Gênica , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Splicing de RNA/genética , Proteínas de Ligação a Hormônio da Tireoide , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proliferação de Células/genética
10.
BMC Geriatr ; 24(1): 670, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123101

RESUMO

OBJECTIVE: Previous research has primarily focused on the incidence and mortality rates of Merkel cell carcinoma (MCC), neglecting the examination of cardiovascular mortality (CVM) risk among survivors, particularly older patients. This study aims to assess the risk of CVM in older individuals diagnosed with MCC. METHODS: Data pertaining to older MCC patients were obtained from the Surveillance, Epidemiology, and End Results database (SEER). CVM risk was measured using standardized mortality ratio (SMR) and cumulative mortality. Multivariate Fine-Gray's competing risk model was utilized to evaluate the risk factors contributing to CVM. RESULTS: Among the study population of 2,899 MCC patients, 465 (16.0%) experienced CVM during the follow-up period. With the prolongation of the follow-up duration, the cumulative mortality rate for CVM reached 27.36%, indicating that cardiovascular disease (CVD) became the second most common cause of death. MCC patients exhibited a higher CVM risk compared to the general population (SMR: 1.69; 95% CI: 1.54-1.86, p < 0.05). Notably, the SMR for other diseases of arteries, arterioles, and capillaries displayed the most significant elevation (SMR: 2.69; 95% CI: 1.16-5.29, p < 0.05). Furthermore, age at diagnosis and disease stage were identified as primary risk factors for CVM, whereas undergoing chemotherapy or radiation demonstrated a protective effect. CONCLUSION: This study emphasizes the significance of CVM as a competing cause of death in older individuals with MCC. MCC patients face a heightened risk of CVM compared to the general population. It is crucial to prioritize cardiovascular health starting from the time of diagnosis and implement personalized CVD monitoring and supportive interventions for MCC patients at high risk. These measures are essential for enhancing survival outcomes.


Assuntos
Carcinoma de Célula de Merkel , Doenças Cardiovasculares , Neoplasias Cutâneas , Humanos , Carcinoma de Célula de Merkel/mortalidade , Carcinoma de Célula de Merkel/epidemiologia , Masculino , Idoso , Feminino , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/epidemiologia , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/epidemiologia , Idoso de 80 Anos ou mais , Fatores de Risco , Programa de SEER/tendências , Estados Unidos/epidemiologia , Medição de Risco/métodos
11.
BMC Pulm Med ; 24(1): 144, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509541

RESUMO

BACKGROUND: The causality of the relationship between bronchiectasis and chronic obstructive pulmonary disease (COPD) remains unclear. This study aims to investigate the potential causal relationship between them, with a specific focus on the role of airway inflammation, infections, smoking as the mediators in the development of COPD. METHODS: We conducted a two-sample Mendelian randomization (MR) analysis to assess: (1) the causal impact of bronchiectasis on COPD, sex, smoking status, infections, eosinophil and neutrophil counts, as well as the causal impact of COPD on bronchiectasis; (2) the causal effect of smoking status, infections and neutrophil counts on COPD; and (3) the extent to which the smoking status, infections and neutrophil counts might mediate any influence of bronchiectasis on the development of COPD. RESULTS: COPD was associated with a higher risk of bronchiectasis (OR 1.28 [95% CI 1.05, 1.56]). Bronchiectasis was associated with a higher risk of COPD (OR 1.08 [95% CI 1.04, 1.13]), higher levels of neutrophil (OR 1.01 [95% CI 1.00, 1.01]), higher risk of respiratory infections (OR 1.04 [95% CI 1.02, 1.06]) and lower risk of smoking. The causal associations of higher neutrophil cells, respiratory infections and smoking with higher COPD risk remained after performing sensitivity analyses that considered different models of horizontal pleiotropy, with OR 1.17, 1.69 and 95.13, respectively. The bronchiectasis-COPD effect was 0.99, 0.85 and 122.79 with genetic adjustment for neutrophils, respiratory infections and smoking. CONCLUSION: COPD and bronchiectasis are mutually causal. And increased neutrophil cell count and respiratory infections appears to mediate much of the effect of bronchiectasis on COPD.


Assuntos
Bronquiectasia , Doença Pulmonar Obstrutiva Crônica , Infecções Respiratórias , Humanos , Neutrófilos , Fumar/efeitos adversos , Fumar/epidemiologia , Análise da Randomização Mendeliana , Bronquiectasia/complicações , Infecções Respiratórias/complicações , Estudo de Associação Genômica Ampla
12.
Nano Lett ; 23(11): 4830-4836, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37260351

RESUMO

Plasmonic nanopores combined with Raman spectroscopy are emerging as platforms for single-molecule detection and sequencing in label-free mode. Recently, the ability of identifying single DNA bases or amino acids has been demonstrated for molecules adsorbed on plasmonic particles and then delivered into the plasmonic pores. Here, we report on bowl-shaped plasmonic gold nanopores capable of direct Raman detection of single λ-DNA molecules in a flow-through scheme. The bowl shape enables the incident laser to be focused into the nanopore to generate a single intense hot spot with no cut off in pore size. Therefore, we achieved ultrasmall focusing of NIR light in a spot of 3 nm. This enabled us to detect 7 consecutive bases along the DNA chain in flow-through conditions. Furthermore, we found a novel electrofluidic mechanism to manipulate the molecular trajectory within the pore volume so that the molecule is pushed toward the hot spot, thus improving the detection efficiency.


Assuntos
Nanoporos , DNA/química , Ouro/química , Nanotecnologia/métodos , Aminoácidos , Análise Espectral Raman
13.
J Am Chem Soc ; 145(14): 7829-7836, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37010254

RESUMO

Acidic water electrolysis enables the production of hydrogen for use as a chemical and as a fuel. The acidic environment hinders water electrolysis on non-noble catalysts, a result of the sluggish kinetics associated with the adsorbate evolution mechanism, reliant as it is on four concerted proton-electron transfer steps. Enabling a faster mechanism with non-noble catalysts will help to further advance acidic water electrolysis. Here, we report evidence that doping Ba cations into a Co3O4 framework to form Co3-xBaxO4 promotes the oxide path mechanism and simultaneously improves activity in acidic electrolytes. Co3-xBaxO4 catalysts reported herein exhibit an overpotential of 278 mV at 10 mA/cm2 in 0.5 M H2SO4 electrolyte and are stable over 110 h of continuous water oxidation operation. We find that the incorporation of Ba cations shortens the Co-Co distance and promotes OH adsorption, findings we link to improved water oxidation in acidic electrolyte.

14.
Small ; 19(45): e2302022, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37461242

RESUMO

Rational design and facile synthesis of efficient environmentally friendly all-inorganic lead-free halide perovskite catalysts are of great significance in photocatalytic CO2 reduction. Aiming at photogenerated charge carrier separation and CO2 reaction dynamics, in this paper, a CsCuCl3 /Cu nanocrystals (NCs) heterojunction catalyst is designed and synthesized via a simple acid-etching solution process by using Cu2 O as the sacrificed template. Due to the disproportionation reaction of Cu2 O induced by concentrated hydrochloric acid, Cu NCs can be deposited onto the surface of CsCuCl3 microcrystals directly and tightly. As revealed by photoelectrochemical analysis, in situ Fourier transform infrared spectra, etc., the Cu NCs contribute a lot to extracting photoelectrons of CsCuCl3 to improve the charge separation efficiency, regulating the CO2 adsorption and activation, and also stabilizing the reaction intermediates. Therefore, CsCuCl3 /Cu heterojunction exhibits a total electron consumption rate of 58.77 µmol g-1 h-1 , which is 2.9-fold of that of single CsCuCl3 . Moreover, high CH4 selectivity of up to 92.7% is achieved, which is much higher than that of CsCuCl3 (50.4%) and most lead-free halide perovskite-based catalysts. This work provides an ingenious but simple strategy to rationally design cocatalysts in situ decorated perovskite catalysts for manipulating both the catalytic activity and the product selectivity.

15.
Cell Commun Signal ; 21(1): 311, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919739

RESUMO

BACKGROUND: Emerging evidence suggests the critical roles of N6-methyladenosine (m6A) RNA modification in tumorigenesis and tumor progression. However, the role of m6A in non-small cell lung cancer (NSCLC) is still unclear. This study aimed to explore the role of the m6A demethylase fat mass and obesity-associated protein (FTO) in the tumor metastasis of NSCLC. METHODS: A human m6A epitranscriptomic microarray analysis was used to identify downstream targets of FTO. Quantitative real-time PCR (qRT‒PCR) and western blotting were employed to evaluate the expression levels of FTO and FAP in NSCLC cell lines and tissues. Gain-of-function and loss-of-function assays were conducted in vivo and in vitro to assess the effects of FTO and FAP on NSCLC metastasis. M6A-RNA immunoprecipitation (MeRIP), RNA immunoprecipitation (RIP), luciferase reporter assays, and RNA stability assays were used to explore the mechanism of FTO action. Co-immunoprecipitation (co-IP) assays were used to determine the mechanism of FAP in NSCLC metastasis. RESULTS: FTO was upregulated and predicted poor prognosis in patients with NSCLC. FTO promoted cell migration and invasion in NSCLC, and the FAK inhibitor defactinib (VS6063) suppressed NSCLC metastasis induced by overexpression of FTO. Mechanistically, FTO facilitated NSCLC metastasis by modifying the m6A level of FAP in a YTHDF2-dependent manner. Moreover, FTO-mediated metastasis formation depended on the interactions between FAP and integrin family members, which further activated the FAK signaling. CONCLUSION: Our current findings provided valuable insights into the role of FTO-mediated m6A demethylation modification in NSCLC metastasis. FTO was identified as a contributor to NSCLC metastasis through the activation of the FAP/integrin/FAK signaling, which may be a potential therapeutic target for NSCLC. Video Abstract.


Emerging evidence suggests the crucial roles of N6-methyladenosine (m6A) RNA modification in tumorigenesis and progression. Nonetheless, the role of m6A in NSCLC remains unclear. The purpose of this study was to investigate the role of m6A demethylase fat mass and obesity-associated protein (FTO) in the tumor metastasis of non-small cell lung cancer (NSCLC). Results illustrated that FTO was upregulated and predicted poor prognosis in NSCLC patients. FTO promoted cell migration and invasion in NSCLC, and the FAK inhibitor defactinib (VS6063) suppressed NSCLC metastasis induced by overexpression of FTO. Mechanistically, FTO facilitated NSCLC metastasis by modifying the m6A level of FAP in a YTHDF2-dependent manner. Moreover, FTO-mediated metastasis formation depended on the interactions between FAP and integrin family members, which further activated the FAK signaling. Our current findings provided valuable insights into the role of FTO-mediated m6A demethylation modification in NSCLC metastasis. FTO was identified as a contributor to NSCLC metastasis through the activation of the FAP/integrin/FAK signaling, which may be a potential therapeutic target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , RNA , Transdução de Sinais , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
16.
Thromb J ; 21(1): 33, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973680

RESUMO

BACKGROUND: Pulmonary tumor thrombotic microangiopathy (PTTM) is a rare malignancy-related respiratory complication, demonstrating rapid progression of pulmonary hypertension (PH) and respiratory failure. Although a number of treatments have been attempted for patients diagnosed with or suspected of having PTTM, successful-treated cases of PTTM were mainly from imatinib therapy, which was a PDGF receptor inhibitor. Anlotinib was a novel tyrosine kinase inhibitor that targets VEGFR, FGFR, PDGFR, and c-kit. CASE PRESENTATION: We reported a patient of PTTM associated with gastric carcinoma, whom were treated with anlotinib, thereby exhibiting significant improvement of PH and respiratory dysfunction. CONCLUSION: Our case provides a new understanding of therapy to PTTM, with implications for defining anlotinib as candidate drug for PTTM. Clinical diagnosis and prompt initiation of anlotinib might be one of the strategies in patients with unstable PTTM.

17.
Neoplasma ; 70(2): 240-250, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37005955

RESUMO

Transcriptional adaptor 3 (TADA3/ADA3) is a conserved transcriptional co-activator and is dysregulated in many aggressive tumors. However, the role of TADA3 in non-small cell lung cancer (NSCLC) remains unknown. It was previously demonstrated that TADA3 expression correlates with poor prognosis in patients with NSCLC. In the present study, the expression and function of TADA3 were investigated in cells in vitro and in vivo. TADA3 expression was evaluated in clinical specimens and cell lines using reverse transcription-quantitative PCR and western blot analysis. The TADA3 protein level was significantly higher in human NSCLC specimens compared with matched normal tissues. In human NSCLC cell lines, short hairpin RNA-mediated silencing of TADA3 suppressed their proliferative, migratory and invasive abilities in vitro, and delayed G1 to S phase progression through the cell cycle. Consistent with this, TADA3 silencing increased expression of the epithelial marker E-cadherin and reduced expression of the mesenchymal markers, N-cadherin, Vimentin, Snail, and Slug. To verify the effect of TADA3 on tumor formation and growth in vivo, a mouse tumor xenograft model was established. TADA3 silencing slowed the growth of NSCLC tumor xenografts in nude mice, and excised tumors showed a similarly altered pattern of epithelial-mesenchymal transition (EMT) marker expression. The present results demonstrated the significance of TADA3 in regulating the growth and metastasis of NSCLC and may provide a theoretical basis for early diagnosis and targeted therapy of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Transição Epitelial-Mesenquimal/genética , Camundongos Nus , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
18.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902071

RESUMO

Tea plants have adapted to grow in tropical acidic soils containing high concentrations of aluminum (Al) and fluoride (F) (as Al/F hyperaccumulators) and use secret organic acids (OAs) to acidify the rhizosphere for acquiring phosphorous and element nutrients. The self-enhanced rhizosphere acidification under Al/F stress and acid rain also render tea plants prone to accumulate more heavy metals and F, which raises significant food safety and health concerns. However, the mechanism behind this is not fully understood. Here, we report that tea plants responded to Al and F stresses by synthesizing and secreting OAs and altering profiles of amino acids, catechins, and caffeine in their roots. These organic compounds could form tea-plant mechanisms to tolerate lower pH and higher Al and F concentrations. Furthermore, high concentrations of Al and F stresses negatively affected the accumulation of tea secondary metabolites in young leaves, and thereby tea nutrient value. The young leaves of tea seedlings under Al and F stresses also tended to increase Al and F accumulation in young leaves but lower essential tea secondary metabolites, which challenged tea quality and safety. Comparisons of transcriptome data combined with metabolite profiling revealed that the corresponding metabolic gene expression supported and explained the metabolism changes in tea roots and young leaves via stresses from high concentrations of Al and F. The study provides new insight into Al- and F-stressed tea plants with regard to responsive metabolism changes and tolerance strategy establishment in tea plants and the impacts of Al/F stresses on metabolite compositions in young leaves used for making teas, which could influence tea nutritional value and food safety.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Fluoretos/metabolismo , Alumínio/metabolismo , Metabolismo Secundário , Plantas/metabolismo , Compostos Orgânicos/metabolismo , Folhas de Planta/metabolismo , Chá/metabolismo
19.
Compr Rev Food Sci Food Saf ; 22(3): 2267-2291, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37043598

RESUMO

Polyphenol oxidase (PPO) is a metalloenzyme with a type III copper core that is abundant in nature. As one of the most essential enzymes in the tea plant (Camellia sinensis), the further regulation of PPO is critical for enhancing defensive responses, cultivating high-quality germplasm resources of tea plants, and producing tea products that are both functional and sensory qualities. Due to their physiological and pharmacological values, the constituents from the oxidative polymerization of PPO in tea manufacturing may serve as functional foods to prevent and treat chronic non-communicable diseases. However, current knowledge of the utilization of PPO in the tea industry is only available from scattered sources, and a more comprehensive study is required to reveal the relationship between PPO and tea obviously. A more comprehensive review of the role of PPO in tea was reported for the first time, as its classification, catalytic mechanism, and utilization in modulating tea flavors, compositions, and nutrition, along with the relationships between PPO-mediated enzymatic reactions and the formation of functional constituents in tea, and the techniques for the modification and application of PPO based on modern enzymology and synthetic biology are summarized and suggested in this article.


Assuntos
Camellia sinensis , Catecol Oxidase/metabolismo , Oxirredução , Chá
20.
BMC Genomics ; 23(1): 29, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991475

RESUMO

BACKGROUND: Brassinosteroids (BRs) are a type of sterol plant hormone that play an important role in various biochemical and physiological reactions such as promoting cell growth, increasing biomass, and improving stress resistance. RESULTS: To investigate the regulatory and molecular mechanism of BRs on the growth and development of tea plants (Camellia sinensis L.), changes in cell structure and gene expression levels of tea leaves treated with exogenous BRs were analyzed by electron microscopy and high-throughput Illumina RNA-Seq technology. The results showed that the number of starch granules in the chloroplasts and lipid globules increased and thylakoids expanded after BR treatment compared with the control. Transcriptome analysis showed that in the four BR treatments (CAA: BR treatment for 3 h, CAB: BR treatment for 9 h, CAC: BR treatment for 24 h, and CAD: BR treatment for 48 h), 3861 (1867 upregulated and 1994 downregulated), 5030 (2461 upregulated and 2569 downregulated), 1626 (815 upregulated and 811 downregulated), and 2050 (1004 upregulated and 1046 downregulated) differentially expressed genes were detected, respectively, compared with CAK (BR treatment for 0 h). Using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, metabolic pathway enrichment analysis showed that the differentially expressed genes of CAA vs. CAK, CAB vs. CAK, CAC vs. CAK, and CAD vs. CAK significantly enriched the functional categories of signal transduction, cell cycle regulation, and starch, sucrose, and flavonoid biosynthesis and metabolism pathways. We also found that after spraying BR, the key genes for caffeine synthesis were downregulated. The results of qRT-PCR coincided with the findings of transcriptomic analysis. CONCLUSIONS: The present study improved our understanding of the effects of BRs on the growth and development of tea leaves and laid the foundation for the in-depth analysis of signal transduction pathways of BRs in tea leaves.


Assuntos
Camellia sinensis , Brassinosteroides , Camellia sinensis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Crescimento e Desenvolvimento , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais , Esteroides Heterocíclicos , Chá , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa