Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Haematologica ; 108(9): 2316-2330, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36475518

RESUMO

Mono-allelic germline disruptions of the transcription factor GATA2 result in a propensity for developing myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), affecting more than 85% of carriers. How a partial loss of GATA2 functionality enables leukemic transformation years later is unclear. This question has remained unsolved mainly due to the lack of informative models, as Gata2 heterozygote mice do not develop hematologic malignancies. Here we show that two different germline Gata2 mutations (TgErg/Gata2het and TgErg/Gata2L359V) accelerate AML in mice expressing the human hematopoietic stem cell regulator ERG. Analysis of Erg/Gata2het fetal liver and bone marrow-derived hematopoietic cells revealed a distinct pre-leukemic phenotype. This was characterized by enhanced transition from stem to progenitor state, increased proliferation, and a striking mitochondrial phenotype, consisting of highly expressed oxidative-phosphorylation-related gene sets, elevated oxygen consumption rates, and notably, markedly distorted mitochondrial morphology. Importantly, the same mitochondrial gene-expression signature was observed in human AML harboring GATA2 aberrations. Similar to the observations in mice, non-leukemic bone marrows from children with germline GATA2 mutation demonstrated marked mitochondrial abnormalities. Thus, we observed the tumor suppressive effects of GATA2 in two germline Gata2 genetic mouse models. As oncogenic mutations often accumulate with age, GATA2 deficiency-mediated priming of hematopoietic cells for oncogenic transformation may explain the earlier occurrence of MDS/AML in patients with GATA2 germline mutation. The mitochondrial phenotype is a potential therapeutic opportunity for the prevention of leukemic transformation in these patients.


Assuntos
Deficiência de GATA2 , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Criança , Humanos , Camundongos , Animais , Deficiência de GATA2/genética , Síndromes Mielodisplásicas/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Medula Óssea/patologia , Células-Tronco Hematopoéticas/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo
2.
Blood ; 135(25): 2271-2285, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32202636

RESUMO

SETD2, the histone H3 lysine 36 methyltransferase, previously identified by us, plays an important role in the pathogenesis of hematologic malignancies, but its role in myelodysplastic syndromes (MDSs) has been unclear. In this study, low expression of SETD2 correlated with shortened survival in patients with MDS, and the SETD2 levels in CD34+ bone marrow cells of those patients were increased by decitabine. We knocked out Setd2 in NUP98-HOXD13 (NHD13) transgenic mice, which phenocopies human MDS, and found that loss of Setd2 accelerated the transformation of MDS into acute myeloid leukemia (AML). Loss of Setd2 enhanced the ability of NHD13+ hematopoietic stem and progenitor cells (HSPCs) to self-renew, with increased symmetric self-renewal division and decreased differentiation and cell death. The growth of MDS-associated leukemia cells was inhibited though increasing the H3K36me3 level by using epigenetic modifying drugs. Furthermore, Setd2 deficiency upregulated hematopoietic stem cell signaling and downregulated myeloid differentiation pathways in the NHD13+ HSPCs. Our RNA-seq and chromatin immunoprecipitation-seq analysis indicated that S100a9, the S100 calcium-binding protein, is a target gene of Setd2 and that the addition of recombinant S100a9 weakens the effect of Setd2 deficiency in the NHD13+ HSPCs. In contrast, downregulation of S100a9 leads to decreases of its downstream targets, including Ikba and Jnk, which influence the self-renewal and differentiation of HSPCs. Therefore, our results demonstrated that SETD2 deficiency predicts poor prognosis in MDS and promotes the transformation of MDS into AML, which provides a potential therapeutic target for MDS-associated acute leukemia.


Assuntos
Anemia Refratária com Excesso de Blastos/patologia , Calgranulina B/fisiologia , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/fisiologia , Leucemia Mieloide Aguda/etiologia , Anemia Refratária com Excesso de Blastos/genética , Anemia Refratária com Excesso de Blastos/metabolismo , Animais , Calgranulina B/biossíntese , Calgranulina B/genética , Transformação Celular Neoplásica , Células Cultivadas , Decitabina/farmacologia , Regulação para Baixo , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/patologia , Código das Histonas/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/biossíntese , Histona-Lisina N-Metiltransferase/genética , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Síndromes Mielodisplásicas/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Prognóstico , Proteínas Recombinantes/uso terapêutico , Fatores de Tempo , Análise Serial de Tecidos , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 116(3): 890-899, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30593567

RESUMO

The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 20% of acute myeloid leukemia (AML) cases. In leukemic cells, AML1-ETO resides in and functions through a stable protein complex, AML1-ETO-containing transcription factor complex (AETFC), that contains multiple transcription (co)factors. Among these AETFC components, HEB and E2A, two members of the ubiquitously expressed E proteins, directly interact with AML1-ETO, confer new DNA-binding capacity to AETFC, and are essential for leukemogenesis. However, the third E protein, E2-2, is specifically silenced in AML1-ETO-expressing leukemic cells, suggesting E2-2 as a negative factor of leukemogenesis. Indeed, ectopic expression of E2-2 selectively inhibits the growth of AML1-ETO-expressing leukemic cells, and this inhibition requires the bHLH DNA-binding domain. RNA-seq and ChIP-seq analyses reveal that, despite some overlap, the three E proteins differentially regulate many target genes. In particular, studies show that E2-2 both redistributes AETFC to, and activates, some genes associated with dendritic cell differentiation and represses MYC target genes. In AML patients, the expression of E2-2 is relatively lower in the t(8;21) subtype, and an E2-2 target gene, THPO, is identified as a potential predictor of relapse. In a mouse model of human t(8;21) leukemia, E2-2 suppression accelerates leukemogenesis. Taken together, these results reveal that, in contrast to HEB and E2A, which facilitate AML1-ETO-mediated leukemogenesis, E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. The three E proteins thus define a heterogeneity of AETFC, which improves our understanding of the precise mechanism of leukemogenesis and assists development of diagnostic/therapeutic strategies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Leucemia Mieloide Aguda/etiologia , Proteínas de Fusão Oncogênica/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/metabolismo , Recidiva
4.
J Immunol ; 199(5): 1817-1826, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28739877

RESUMO

PALLD is an actin cross-linker supporting cellular mechanical tension. However, its involvement in the regulation of phagocytosis, a cellular activity essential for innate immunity and physiological tissue turnover, is unclear. We report that PALLD is highly induced along with all-trans-retinoic acid-induced maturation of myeloid leukemia cells, to promote Ig- or complement-opsonized phagocytosis. PALLD mechanistically facilitates phagocytic receptor clustering by regulating actin polymerization and c-Src dynamic activation during particle binding and early phagosome formation. PALLD is also required at the nascent phagosome to recruit phosphatase oculocerebrorenal syndrome of Lowe, which regulates phosphatidylinositol-4,5-bisphosphate hydrolysis and actin depolymerization to complete phagosome closure. Collectively, our results show a new function for PALLD as a crucial regulator of the early phase of phagocytosis by elaborating dynamic actin polymerization and depolymerization.


Assuntos
Actinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Dendríticas/imunologia , Leucemia Mieloide Aguda/imunologia , Células-Tronco Neoplásicas/fisiologia , Síndrome Oculocerebrorrenal/imunologia , Fagocitose , Fosfoproteínas/metabolismo , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Autorrenovação Celular , Proteínas do Citoesqueleto/genética , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Fagossomos/metabolismo , Fosfoproteínas/genética , Monoéster Fosfórico Hidrolases/metabolismo , Polimerização , Agregação de Receptores , Tretinoína/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(16): 6459-64, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23553835

RESUMO

Retinoic acid inducible gene I (RIG-I) senses viral RNAs and triggers innate antiviral responses through induction of type I IFNs and inflammatory cytokines. However, whether RIG-I interacts with host cellular RNA remains undetermined. Here we report that Rig-I interacts with multiple cellular mRNAs, especially Nf-κb1. Rig-I is required for NF-κB activity via regulating Nf-κb1 expression at posttranscriptional levels. It interacts with the multiple binding sites within 3'-UTR of Nf-κb1 mRNA. Further analyses reveal that three distinct tandem motifs enriched in the 3'-UTR fragments can be recognized by Rig-I. The 3'-UTR binding with Rig-I plays a critical role in normal translation of Nf-κb1 by recruiting the ribosomal proteins [ribosomal protein L13 (Rpl13) and Rpl8] and rRNAs (18S and 28S). Down-regulation of Rig-I or Rpl13 significantly reduces Nf-κb1 and 3'-UTR-mediated luciferase expression levels. These findings indicate that Rig-I functions as a positive regulator for NF-κB signaling and is involved in multiple biological processes in addition to host antivirus immunity.


Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica/fisiologia , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Northern Blotting , Western Blotting , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Imunofluorescência , Imunoprecipitação , Luciferases , Camundongos , Camundongos Knockout , Análise em Microsséries , Simulação de Dinâmica Molecular , NF-kappa B/genética , Interferência de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ribossômicas/metabolismo
6.
Dev Biol ; 392(2): 233-44, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24892953

RESUMO

As the primary driving forces of gastrulation, convergence and extension (C&E) movements lead to a medio-lateral narrowing and an anterior-posterior elongation of the embryonic body axis. Histone methylation as a post-translational modification plays a critical role in early embryonic development, but its functions in C&E movements remain largely unknown. Here, we show that the setdb2-dvr1 transcriptional cascade plays a critical role in C&E movements during zebrafish gastrulation. Knockdown of Setdb2, a SET domain-containing protein possessing a potential histone H3K9 methyltransferase activity, induced abnormal C&E movements, resulting in anterior-posterior shortening and medio-lateral expansion of the embryonic axis, as well as abnormal notochord cell polarity. Furthermore, we found that Setdb2 functions through fine-tuning the expression of dvr1, a ligand of the TGF-ß superfamily, to an appropriate level to ensure proper C&E movements in a non-cell-autonomous manner. In addition, both overexpression and knockdown of Dvr1 at the one-cell stage resulted in defects at epiboly and C&E. These data demonstrate that Setdb2 is a novel regulator for C&E movements and acts by modulating the expression level of dvr1, suggesting that Dvr1 acts as a direct and essential mediator for C&E cell movements.


Assuntos
Movimento Celular/fisiologia , Gastrulação/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Western Blotting , Imunofluorescência , Técnicas de Silenciamento de Genes , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Hibridização In Situ , Análise em Microsséries , Morfolinos/genética , Reação em Cadeia da Polimerase em Tempo Real , Fator de Crescimento Transformador beta/genética , Proteínas de Peixe-Zebra/genética
7.
Am J Nephrol ; 39(2): 110-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24503548

RESUMO

OBJECTIVES: Acute kidney injury (AKI) is a common complication in hospitalized patients and the incidence of AKI is rapidly increasing. Despite the advances in treatment of AKI, many patients still progress to end-stage renal disease and depend on dialysis. Therefore, early diagnosis and adequate treatment of AKI could improve prognosis. METHODS: We established rat models of AKI induced by cisplatin nephrotoxicity and renal ischemia-reperfusion (I/R). Urine samples were collected, labeled with isobaric tags for relative and absolute quantification agents, and then subjected to nano-LC-MS/MS-based proteomic analysis. Results of the proteomic study were confirmed by Western blot. We also performed RNAi to silence nestin and investigate its role in renal I/R injury. We then validated its clinical application by studying urine nestin levels in AKI patients with cardiovascular surgeries. RESULTS: Our proteomic analysis showed that fetuin-A, nestin, hamartin and T-kininogen were differentially expressed in the urine samples of rats after cisplatin or I/R treatment. Western blot confirmed the differential expression of these proteins in animal models and ELISA confirmed the differential expression of nestin in human urine samples. To explore the expression of nestin in the development of AKI, our results showed that nestin was primarily detected in the glomeruli and barely detected in tubular cells but increased in tubular cells during I/R- and cisplatin-induced AKI. The urine nestin-to-creatinine ratio increased earlier than serum creatinine in AKI patients with postcardiovascular surgeries. The role of nestin in AKI might be related to the p53 signaling pathway. CONCLUSIONS: Thus, our results demonstrated that urinary nestin could be a urinary biomarker for patients with AKI and its role in AKI might be related to the p53 signaling pathway.


Assuntos
Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/urina , Nestina/urina , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/urina , Injúria Renal Aguda/induzido quimicamente , Adulto , Idoso , Animais , Antineoplásicos/farmacologia , Biomarcadores/urina , Cisplatino/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nestina/genética , Proteômica/métodos , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Transdução de Sinais/fisiologia , Adulto Jovem
8.
FEBS J ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652546

RESUMO

l-threonine dehydrogenase (Tdh) is an enzyme that links threonine metabolism to epigenetic modifications and mitochondria biogenesis. In vitro studies show that it is critical for the regulation of trimethylation of histone H3 lysine 4 (H3K4me3) levels and cell fate determination of mouse embryonic stem cells (mESCs). However, whether Tdh regulates a developmental process in vivo and, if it does, whether it also primarily regulates H3K4me3 levels in this process as it does in mESCs, remains elusive. Here, we revealed that, in zebrafish hematopoiesis, tdh is preferentially expressed in neutrophils. Knockout of tdh causes a decrease in neutrophil number and slightly suppresses their acute injury-induced migration, but, unlike the mESCs, the level of H3K4me3 is not evidently reduced in neutrophils sorted from the kidney marrow of adult tdh-null zebrafish. These phenotypes are dependent on the enzymatic activity of Tdh. Importantly, a soluble supplement of nutrients that are able to fuel the acetyl-CoA pool, such as pyruvate, glucose and branched-chain amino acids, is sufficient to rescue the reduction in neutrophils caused by tdh deletion. In summary, our study presents evidence for the functional requirement of Tdh-mediated threonine metabolism in a developmental process in vivo. It also provides an animal model for investigating the nutritional regulation of myelopoiesis and immune response, as well as a useful tool for high-throughput drug/nutrition screening.

9.
Proc Natl Acad Sci U S A ; 107(50): 21683-8, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21118980

RESUMO

Arsenic, a curative agent for acute promyelocytic leukemia, induces cell apoptosis and degradation of BCR-ABL in chronic myelogenous leukemia (CML). We demonstrated that ubiquitination and degradation of BCR-ABL was mediated by c-CBL, a RING-type E3 ligase that was also shown to be involved in ubiquitination for many other receptor/protein tyrosine kinases. Our data showed that c-CBL protein was considerably up-regulated by arsenic sulfide (As(4)S(4)). Interestingly, arsenic directly bound the RING finger domain of c-CBL to inhibit its self-ubiquitination/degradation without interfering with the enhancement of ubiquitination and subsequent proteolysis of its substrate BCR-ABL. Degradation of BCR-ABL due to c-CBL induction as a result of arsenic treatment was also observed in vivo in CML mice. These findings provide insight into the molecular mechanisms of arsenic and further support its therapeutic applications in CML in combination with tyrosine kinase inhibitors and potentially also in other malignancies involving aberrant receptor/protein tyrosine kinase signaling.


Assuntos
Arsenicais/uso terapêutico , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Sulfetos/uso terapêutico , Sequência de Aminoácidos , Animais , Proteínas de Fusão bcr-abl/genética , Células HeLa , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Conformação Proteica , Proteínas Proto-Oncogênicas c-cbl/química , Proteínas Proto-Oncogênicas c-cbl/genética , Distribuição Aleatória , Ubiquitinação
10.
Proc Natl Acad Sci U S A ; 107(7): 2956-61, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133625

RESUMO

HYPB is a human histone H3 lysine 36 (H3K36)-specific methyltransferase and acts as the ortholog of yeast Set2. This study explored the physiological function of mammalian HYPB using knockout mice. Homozygous disruption of Hypb impaired H3K36 trimethylation but not mono- or dimethylation, and resulted in embryonic lethality at E10.5-E11.5. Severe vascular defects were observed in the Hypb(-/-) embryo, yolk sac, and placenta. The abnormally dilated capillaries in mutant embryos and yolk sacs could not be remodeled into large blood vessels or intricate networks, and the aberrantly rounded mesodermal cells exhibited weakened interaction with endothelial cells. The embryonic vessels failed to invade the labyrinthine layer of placenta, which impaired the embryonic-maternal vascular connection. These defects could not be rescued by wild-type tetraploid blastocysts, excluding the possibility that they were caused by the extraembryonic tissues. Consistent with these phenotypes, gene expression profiling in wild-type and Hypb(-/-) yolk sacs revealed that the Hypb disruption altered the expression of some genes involved in vascular remodeling. At the cellular level, Hypb(-/-) embryonic stem cell-derived embryonic bodies, as well as in vitro-cultured human endothelial cells with siRNA-mediated suppression of HYPB, showed obvious defects in cell migration and invasion during vessel formation, suggesting an intrinsic role of Hypb in vascular development. Taken together, these results indicate that Hypb is required for embryonic vascular remodeling and provide a tool to study the function of H3K36 methylation in vasculogenesis/angiogenesis.


Assuntos
Embrião de Mamíferos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Neovascularização Fisiológica/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Humanos , Metilação , Camundongos , Camundongos Knockout , Neovascularização Fisiológica/genética , Interferência de RNA
11.
Proc Natl Acad Sci U S A ; 106(9): 3378-83, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19208803

RESUMO

In this study, we show that combined use of Imatinib (IM) and arsenic sulfide [As(4)S(4) (AS)] exerts more profound therapeutic effects in a BCR/ABL-positive mouse model of chronic myeloid leukemia (CML) than either drug as a single agent. A systematic analysis of dynamic changes of the proteome, phosphoproteome, and transcriptome in K562 cells after AS and/or IM treatment was performed to address the mechanisms underlying this synergy. Our data indicate that AS promotes the activities of the unfolded protein reaction (UPR) and ubiquitination pathway, which could form the biochemical basis for the pharmacological effects of this compound. In this CML model, AS targets BCR/ABL through the ubiquitination of key lysine residues, leading to its proteasomal degradation, whereas IM inhibits the PI3K/AKT/mTOR pathway. Combination of the 2 agents synergistically arrests the cell cycle, decreases activity of BCR/ABL, and leads to activation of intrinsic and extrinsic apoptosis pathways through complex modifications to both transcription and protein levels. Thus, these results suggest potential clinical benefits of IM/AS combination therapy for human CML.


Assuntos
Arsenicais/uso terapêutico , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Piperazinas/uso terapêutico , Pirimidinas/uso terapêutico , Sulfetos/uso terapêutico , Biologia de Sistemas , Animais , Benzamidas , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Proteínas de Fusão bcr-abl/química , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Mesilato de Imatinib , Camundongos , Modelos Moleculares , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Taxa de Sobrevida , Serina-Treonina Quinases TOR , Ubiquitinas/metabolismo
12.
Front Cell Dev Biol ; 10: 992714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158200

RESUMO

The ETO-family transcriptional corepressors, including ETO, ETO2, and MTGR1, are all involved in leukemia-causing chromosomal translocations. In every case, an ETO-family corepressor acquires a DNA-binding domain (DBD) to form a typical transcription factor-the DBD binds to DNA, while the ETO moiety manifests transcriptional activity. A directly comparative study of these "homologous" fusion transcription factors may clarify their similarities and differences in regulating transcription and leukemogenesis. Here, we performed a side-by-side comparison between AML1-ETO and ETO2-GLIS2, the most common fusion proteins in M2-and M7-subtypes of acute myeloid leukemia, respectively, by inducible expression of them in U937 leukemia cells. We found that, although AML1-ETO and ETO2-GLIS2 can use their own DBDs to bind DNA, they share a large proportion of genome-wide binding regions dependent on other cooperative transcription factors, including the ETS-, bZIP- and bHLH-family proteins. AML1-ETO acts as either transcriptional repressor or activator, whereas ETO2-GLIS2 mainly acts as activator. The repressor-versus-activator functions of AML1-ETO might be determined by the abundance of cooperative transcription factors/cofactors on the target genes. Importantly, AML1-ETO and ETO2-GLIS2 differentially regulate key transcription factors in myeloid differentiation including PU.1 and C/EBPß. Consequently, AML1-ETO inhibits, but ETO2-GLIS2 facilitates, myeloid differentiation of U937 cells. This function of ETO2-GLIS2 is reminiscent of a similar effect of MLL-AF9 as previously reported. Taken together, this directly comparative study between AML1-ETO and ETO2-GLIS2 in the same cellular context provides insights into context-dependent transcription regulatory mechanisms that may underlie how these seemingly "homologous" fusion transcription factors exert distinct functions to drive different subtypes of leukemia.

13.
Blood ; 113(6): 1340-9, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18941117

RESUMO

Precise transcriptional control of developmental stage-specific expression and switching of alpha- and beta-globin genes is significantly important to understand the general principles controlling gene expression and the pathogenesis of thalassemia. Although transcription factors regulating beta-globin genes have been identified, little is known about the microRNAs and trans-acting mechanism controlling alpha-globin genes transcription. Here, we show that an erythroid lineage-specific microRNA gene, miR-144, expressed at specific developmental stages during zebrafish embryogenesis, negatively regulates the embryonic alpha-globin, but not embryonic beta-globin, gene expression, through physiologically targeting klfd, an erythroid-specific Krüppel-like transcription factor. Klfd selectively binds to the CACCC boxes in the promoters of both alpha-globin and miR-144 genes to activate their transcriptions, thus forming a negative feedback circuitry to fine-tune the expression of embryonic alpha-globin gene. The selective effect of the miR-144-Klfd pathway on globin gene regulation may thereby constitute a novel therapeutic target for improving the clinical outcome of patients with thalassemia.


Assuntos
Embrião não Mamífero/metabolismo , Eritropoese/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , alfa-Globinas/genética , Animais , Animais Geneticamente Modificados , Apoptose , Northern Blotting , Western Blotting , Biologia Computacional , Embrião não Mamífero/citologia , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas Imunoenzimáticas , Hibridização In Situ , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/fisiologia , MicroRNAs/metabolismo , Oligonucleotídeos/farmacologia , Regiões Promotoras Genéticas/genética , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/fisiologia , alfa-Globinas/metabolismo , Globinas beta/genética , Globinas beta/metabolismo
14.
Proc Natl Acad Sci U S A ; 105(6): 2076-81, 2008 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-18250304

RESUMO

Acquisition of additional genetic and/or epigenetic abnormalities other than the BCR/ABL fusion gene is believed to cause disease progression in chronic myeloid leukemia (CML) from chronic phase to blast crisis (BC). To gain insights into the underlying mechanisms of progression to BC, we screened DNA samples from CML patients during blast transformation for mutations in a number of transcription factor genes that are critical for myeloid-lymphoid development. In 85 cases of CML blast transformation, we identified two new mutations in the coding region of GATA-2, a negative regulator of hematopoietic stem/progenitor cell differentiation. A L359V substitution within zinc finger domain (ZF) 2 of GATA-2 was found in eight cases with myelomonoblastic features, whereas an in-frame deletion of 6 aa (delta341-346) spanning the C-terminal border of ZF1 was detected in one patient at myeloid BC with eosinophilia. Further studies indicated that L359V not only increased transactivation activity of GATA-2 but also enhanced its inhibitory effects on the activity of PU.1, a major regulator of myelopoiesis. Consistent with the myelomonoblastic features of CML transformation with the GATA-2 L359V mutant, transduction of the GATA-2 L359V mutant into HL-60 cells or BCR/ABL-harboring murine cells disturbed myelomonocytic differentiation/proliferation in vitro and in vivo, respectively. These data strongly suggest that GATA-2 mutations may play a role in acute myeloid transformation in a subset of CML patients.


Assuntos
Fator de Transcrição GATA2/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/genética , Mutação , Animais , Sequência de Bases , Células COS , Linhagem Celular , Chlorocebus aethiops , Primers do DNA , Progressão da Doença , Humanos , Imunoprecipitação , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mieloide Aguda/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Proc Natl Acad Sci U S A ; 105(30): 10553-8, 2008 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-18650396

RESUMO

RIG-I has been implicated in innate immunity by sensing intracellular viral RNAs and inducing type I IFN production. However, we have found a significant RIG-I induction in a biological setting without active viral infection-namely, during RA-induced terminal granulocytic differentiation of acute myeloid leukemias. Here, we present evidence that a significant Rig-I induction also occurs during normal myelopoiesis and that the disruption of the Rig-I gene in mice leads to the development of a progressive myeloproliferative disorder. The initiation of progressive myeloproliferative disorder is mainly due to an intrinsic defect of Rig-I(-/-) myeloid cells, which are characterized by a reduced expression of IFN consensus sequence binding protein, a major regulator of myeloid differentiation. Thus, our study reveals a critical regulatory role of Rig-I in modulating the generation and differentiation of granulocytes.


Assuntos
RNA Helicases DEAD-box/fisiologia , Regulação da Expressão Gênica , Granulócitos/citologia , Receptores do Ácido Retinoico/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Proteína DEAD-box 58 , Éxons , Granulócitos/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Imunidade Inata , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/citologia , Transtornos Mieloproliferativos/metabolismo
16.
Yi Chuan ; 33(8): 879-85, 2011 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-21831804

RESUMO

To investigate the variance in exogenous gene expression driven by the different promoters in leukemia cells, four GFP reporter lentivirus vectors carrying different promoters, including EF1α, PGK, Ubiquitin and CMV, were selected. Leukemia cell lines NB4, THP1, HL60 and Kasumi were infected with lentivirus produced from these reporter vectors, respectively. Then, fluorescence microscope, flow cytometry and fluorescence quantitative PCR were used to detect the GFP expression strength. The results of this study clearly showed that the expression levels of the reporter genes with four different promoters were significantly different. Among them, EF1α drove the highest level of GFP expression, while CMV promoter induced the lowest level. Our results suggested that promoters should be carefully chosen in order to get the appropriate exogenous expression level in leukemia cells according to the study need.


Assuntos
Expressão Gênica , Leucemia/genética , Regiões Promotoras Genéticas , Linhagem Celular Tumoral , Genes Reporter , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Leucemia/metabolismo
17.
Cell Death Dis ; 12(6): 568, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078881

RESUMO

GATA2, a key transcription factor in hematopoiesis, is frequently mutated in hematopoietic malignancies. How the GATA2 mutants contribute to hematopoiesis and malignant transformation remains largely unexplored. Here, we report that Gata2-L359V mutation impeded hematopoietic differentiation in murine embryonic and adult hematopoiesis and blocked murine chronic myeloid leukemia (CML) cell differentiation. We established a Gata2-L359V knockin mouse model in which the homozygous Gata2-L359V mutation caused major defects in primitive erythropoiesis with an accumulation of erythroid precursors and severe anemia, leading to embryonic lethality around E11.5. During adult life, the Gata2-L359V heterozygous mice exhibited a notable decrease in bone marrow (BM) recovery under stress induction with cytotoxic drug 5-fluorouracil. Using RNA sequencing, it was revealed that homozygous Gata2-L359V suppressed genes related to embryonic hematopoiesis in yolk sac, while heterozygous Gata2-L359V dysregulated genes related to cell cycle and proliferation in BM Lin-Sca1+c-kit+ cells. Furthermore, through chromatin immunoprecipitation sequencing and transactivation experiments, we found that this mutation enhanced the DNA-binding capacity and transcriptional activities of Gata2, which was likely associated with the altered expression of some essential genes during embryonic and adult hematopoiesis. In mice model harboring BCR/ABL, single-cell RNA-sequencing demonstrated that Gata2-L359V induced additional gene expression profile abnormalities and partially affected cell differentiation at the early stage of myelomonocytic lineage, evidenced by the increase of granulocyte-monocyte progenitors and monocytosis. Taken together, our study unveiled that Gata2-L359V mutation induces defective hematopoietic development and blocks the differentiation of CML cells.


Assuntos
Fator de Transcrição GATA2/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Animais , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Fator de Transcrição GATA2/genética , Hematopoese , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação
18.
Cell Discov ; 7(1): 98, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34697290

RESUMO

The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a zebrafish model in which loss of threonyl-tRNA synthetase (Tars) induces angiogenesis dependent on Tars aminoacylation activity. Comparative transcriptome analysis of the tars-mutant and wild-type embryos with/without Gcn2- or Perk-inhibition reveals that only Gcn2-mediated AAR is activated in the tars-mutants, whereas Perk functions predominantly in normal development. Mechanistic analysis shows that, while a considerable amount of eIF2α is normally phosphorylated by Perk, the loss of Tars causes an accumulation of uncharged tRNAThr, which in turn activates Gcn2, leading to phosphorylation of an extra amount of eIF2α. The partial switchover of kinases for eIF2α largely overwhelms the functions of Perk in normal development. Interestingly, although inhibition of Gcn2 and Perk in this stress condition both can reduce the eIF2α phosphorylation levels, their functional consequences in the regulation of target genes and in the rescue of the angiogenic phenotypes are dramatically different. Indeed, genetic and pharmacological manipulations of these pathways validate that the Gcn2-mediated AAR, but not the Perk-mediated UPR, is required for tars-deficiency induced angiogenesis. Thus, the interconnected AAR and UPR pathways differentially regulate angiogenesis through selective functions and mutual competitions, reflecting the specificity and efficiency of multiple stress response pathways that evolve integrally to enable an organism to sense/respond precisely to various types of stresses.

19.
Biochem Biophys Res Commun ; 394(1): 18-23, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20167204

RESUMO

Makorin-2, consisting of four highly conserved C(3)H zinc fingers, a Cys-His motif and a C(3)HC(4) RING zinc finger domain, is a putative ribonucleoprotein. We have previously reported that Xenopus makorin-2 (mkrn2) is a neurogenesis inhibitor acting upstream of glycogen synthase kinase-3beta (GSK-3beta) in the phosphatidylinositol 3-kinase/Akt pathway. In an effort to identify the functional domains required for its anti-neurogenic activity, we designed and constructed a series of N- and C-terminal truncation mutants of mkrn2. Concurred with the full-length mkrn2, we showed that overexpression of one of the truncation mutants mkrn2(s)-7, which consists of only the third C(3)H zinc finger, Cys-His motif and C(3)HC(4) RING zinc finger, is essential and sufficient to produce the phenotypical dorso-posterior deficiencies and small-head/short-tail phenotype in tadpoles. In animal cap explant assay, we further demonstrated that mkrn2(s)-7 not only inhibits activin and retinoic acid-induced animal cap neuralization and the expression of a pan-neural marker neural cell adhesion molecule, but also induces GSK-3beta expression. These results collectively suggest that the third C(3)H zinc finger, Cys-His motif and C(3)HC(4) RING zinc finger are indispensable for the anti-neurogenic activity of mkrn2.


Assuntos
Neurogênese , Ribonucleoproteínas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Motivos de Aminoácidos/genética , Animais , Sequência Conservada , Embrião não Mamífero/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Filogenia , Estrutura Terciária de Proteína/genética , Ribonucleoproteínas/classificação , Ribonucleoproteínas/genética , Proteínas de Xenopus/classificação , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo , Dedos de Zinco/genética
20.
Am J Nephrol ; 31(1): 24-35, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19864886

RESUMO

BACKGROUND: Transforming growth factor-beta (TGF-beta)-induced epithelial-to-mesenchymal transition (EMT) plays an important role in renal fibrosis and progression of chronic kidney disease (CKD). Phosphorylation of proteins is essential to TGF-beta signaling. We applied isobaric tags for relative and absolute quantification (iTRAQ) technology to profile the phosphoproteins in tubular epithelial cells in response to TGF-beta-induced EMT in order to further study molecular events. METHODS: HK-2 cells were treated with TGF-beta1 to induce EMT. The cells were divided into a control group (without TGF-beta1 treatment) and a TGF-beta1-treated group. Phosphoproteins from two groups were extracted and differentially labeled with iTRAQ reagents and processed by 2D-nano-HPLC-MS/MS. Validating of iTRAQ analysis was performed by western blot. Bioinformatic analysis was performed by on-line databases. RESULTS: By iTRAQ-2D-nano-HPLC-MS/MS, 38 differentially expressed phosphoproteins were identified which included 19 up-regulated phosphoproteins and 19 down-regulated phosphoproteins. Western blot confirmed up-regulation of phosphorylated moesin and HSP90alpha. Bioinformatic analysis suggested that the majority of proteins were located in the nucleus and endoplasmic reticulum lumen. The phosphoproteins were categorized into 17 molecular function classifications. Nucleic acid binding protein, cytoskeletal protein and chaperone were the major categories of molecular function. A biological network was built to analyze interaction between up-regulated proteins. CONCLUSION: We demonstrate a TGF-beta1-mediated post-transcriptional regulation of EMT in tubular epithelial cells. Phosphorylation of moesin and HSP90alpha might play a role in TGF-beta-induced EMT.


Assuntos
Transdiferenciação Celular , Células Epiteliais/fisiologia , Túbulos Renais/citologia , Túbulos Renais/fisiologia , Mesoderma/citologia , Mesoderma/fisiologia , Fosfoproteínas/fisiologia , Proteômica , Fator de Crescimento Transformador beta1/fisiologia , Células Cultivadas , Humanos , Urotélio/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa