Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(37): 14998-15005, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37655478

RESUMO

Although ionic liquids (ILs) are of prime interest for the synthesis of various nanomaterials, they are scarcely utilized for the polyhydrido copper(I) [Cu(I)H] clusters. Herein, two air-stable Cu(I)H clusters, [Cu8H6(dppy)6](NTf2)2 (Cu8H6) and {Cu12H9(dppy)6[N(CN)2]3} (Cu12H9), are synthesized in high yields for the first time from the ILs-driven conversion of an unprecedented cluster [Cu7H5(dppy)6](ClO4)2 (Cu7H5) by a facile three-layers diffusion crystal (TLDC) method, strategically introducing IL-NTf2 and IL-N(CN)2 as two types of unusual interfacial crystallized templates, respectively. Their structures are fully characterized by various spectroscopic methods and X-ray crystallography, which shows that the anion of IL plays an important role as an anion template and an anion ligand in controlling the structural conversion of Cu(I)H clusters. Their photophysical properties are also investigated, and it is found that all reported clusters exhibit red luminescence with λem ranging from 600 to 690 nm.

2.
Angew Chem Int Ed Engl ; 61(11): e202116511, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35015323

RESUMO

Herein, new types of zero-dimensional (0D) perovskites (PA6InCl9 and PA4InCl7) with blue room-temperature phosphorescence (RTP) were obtained from InCl3 and aniline hydrochloride. These are highly sensitive to external light and force stimuli. The RTP quantum yield of PA6InCl9 can be enhanced from 25.2 % to 42.8 % upon illumination. Under mechanical force, PA4InCl7 exhibits a phase transform to PA6InCl9, thus boosting ultralong RTP with a lifetime up to 1.2 s. Furthermore, white and orange pure RTP with a quantum yield close to 100 % can be realized when Sb3+ was introduced into PA6InCl9. The white pure phosphorescence with a color-rendering index (CRI) close to 90 consists of blue RTP of PA6InCl9 and orange RTP of Sb3+ . Thus, this work not only overcomes long-standing problems of low quantum yield and short lifetime of blue RTP, but also obtains high-efficiency white RTP. It provides a feasible method to realize near-unity quantum efficiency and has great application potential in the fields of optical devices and smart materials.

3.
Dalton Trans ; 53(13): 5844-5850, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38469690

RESUMO

Three pargyline-phosphine copper(I) clusters, [Cu4(CC-C9H12N)3(PPh3)4](PF6) (1) and [Cu6(CC-C9H12N)4(dppy)4](X)2 (dppy = diphenyl-2-pyridylphosphine; X = PF6 for 2 and X = ClO4 for 3), were synthesized. Their structures were fully characterized using various spectroscopic methods and X-ray crystallography, which showed that the stoichiometry and nature of pargyline and phosphine ligands play an important role in tuning the structure and photophysical features of Cu(I) clusters. Interestingly, clusters 1, 2 and 3 exhibited red, orange and yellow phosphorescence with high quantum yields of 88.5%, 22.0% and 40.2%, respectively, at room temperature. Moreover, clusters 1-3 show distinct temperature-dependent emissions. The excellent luminescence performance of 1 and 3 was designed and employed for the construction of monochrome and white light-emitting devices (LEDs).

4.
ACS Appl Mater Interfaces ; 14(12): 14703-14711, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35290015

RESUMO

Herein, two maleimide derivatives substituted by Br (DBM) and I (DIM) with a two-dimensional (2D) layered structure are found to have highly efficient red room-temperature phosphorescence (RTP) at 660 nm in solid state, which is independent of their morphology (crystal, powder, and film). The red RTP of DBM and DIM is closely related to the synergism of nπ-ct-π* transitions and the 2D halogen-bonded network. Interestingly, the red RTP can be excited by visible light of 500 nm, which should be ascribed to the forbidden absorption from the ground state to the triplet state activated in the layered halogen-bonded framework. Due to the rich intermolecular interactions in the rigid layered structure, the red RTP of DBM is very stable under water or external force stimulation. Notably, Hg(II) and Cd(II) ions in a pure aqueous solution result in an opposite change in the RTP intensity of the DBM film. The detection limit of Hg(II) ion is as low as 2.5 × 10-5 nM, lesser than all reported values. The above results not only provide a new idea for the design of simple and efficient red RTP materials but also make it possible to develop solid-state phosphorescent probes for toxic heavy metal ions in environmental sewage with high sensitivity and selectivity.

5.
Chem Sci ; 12(43): 14451-14458, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34880996

RESUMO

Organic-inorganic hybrid metal halides have attracted intensive attention because of their unique electronic structure and solution processability. They have a rigid micro/nano-structure and heavy atom effect, which has obvious advantages in promoting organic room temperature phosphorescence (RTP). However, the toxicity of heavy metals has limited their further development. Herein, two metal-free 2D layered ammonium halides, homopiperonylammonium bromide and chloride (HLB and HLC), are described for the first time. Their layered structure consists of rigid inorganic ammonium halide laminates and neatly stacked organic layers. The rigid laminates and external heavy atom effect of halogen atoms make HLB and HLC produce green RTP. When phosphor guests with different triplet energies are doped into HLB, HLC, or phenylethylamine salt hosts, effective full-color and even white ultra-long RTP with phosphorescence quantum yield up to 18.7% and lifetime up to 1.7 s is realized through energy transfer between the host and guest. Due to the simple solution synthesis, 10 g-level doped layered organic ammonium halides with the same phosphorescence properties can be easily obtained. The information ink based on these doped halides and non-toxic ethanol solvent can form various patterns on filter paper. The fluorescence and phosphorescence of these patterns are sensitive to the excitation wavelength and acid-base vapor. Consequently, they can be applied to multiple complex anti-counterfeiting and fluorescence/phosphorescence dual-mode chemical sensors.

6.
J Phys Chem Lett ; 12(3): 1040-1045, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33470819

RESUMO

Herein, an organic fluorophore termed NLAC is introduced into 2D hybrid perovskites with wide band gap (>3.54 eV) to give a green emission with quantum yield up to 81%. The highly efficient luminescence is ascribed to avoiding the aggregation of NLAC and formation of an inorganic free exciton which is easy to thermally quench. On this basis, a new strategy to generate efficient white emission with afterglow has been proposed by codoping a short-wavelength fluorophore and long-wavelength phosphor into 2D organic-inorganic hybrid perovskites (OIHPs). As a result, a single-component white-light-emitting material PEPC-3N based on NLAC with CIE of (0.33, 0.36) and quantum yield up to 43% can be obtained. Interestingly, PEPC-3N shows a dual-color organic afterglow and excitation-wavelength-dependent emission, consequently forming a switch between green fluorescence and yellow afterglow. This unique performance indicates PEPC-3N has huge potential in afterglow WLEDs and information storage.

7.
Chem Commun (Camb) ; 57(77): 9890-9893, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34494033

RESUMO

Two newly synthesized ultra-small copper nanoclusters, [Cu3(µ3-H)(µ2-dppy)4](ClO4)2 (1) and [Cu4(µ4-H)(µ2-dppy)4(µ2-Cl)2](ClO4) (2) (dppy = diphenyl-2-pyridylphosphine), have been shown to exhibit ultrabright yellow and yellow-green room-temperature phosphorescence (RTP) emission, with high quantum yields of 71.8% and 63.5%, respectively. Therefore, nanocluster 1 has been applied for the first time as a single component phosphor for yellow and white light-emitting diodes (LEDs) with favourable characteristics.

8.
ACS Appl Mater Interfaces ; 12(1): 1419-1426, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31833758

RESUMO

Organic afterglow materials (OAMs) with a lifetime longer than 0.1 s have recently received much attention for their fascinating properties meeting the critical requirements of applications in newly emerged technologies. However, the development of OAMs lags behind for their low luminescence efficiency. Usually, enhancing the phosphorescence efficiency of organic materials causes a short lifetime. Here, we report two kinds of OAMs, two-dimensional (2D) layered organic-inorganic hybrid zinc bromides (PEZB-NTA and PEZB-BPA), obtained in an environmentally friendly ethanol solvent by a low-temperature solution method. They display highly efficient and persistent luminescence in air in both crystals and thin films with phosphorescence quantum yields up to 42% in crystals and 27% in films. For OAMs, the two quantum yields are the highest values ever reported for crystals and films. Due to the excellent crystalline and film-forming ability, PEZB-NTA and PEZB-BPA in ethanol can be used as inks to construct patterns on various rigid and flexible substrates, including paper, iron, plastic, marble, tin foil, and cloth. Consequently, the novel OAMs show great application prospects in the fields of anti-counterfeiting and information storage because of their economic synthesis, solution processing, and easy operation.

9.
Chem Sci ; 9(48): 8975-8981, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30627411

RESUMO

Regardless of rapid development of organic room-temperature phosphorescence (RTP) originating from phosphors in crystals, highly efficient and persistent RTP from common fluorophores is very rare. Herein, 1,8-naphthalimide (NI), a common organic fluorophore, is doped into organic cations of 2D layered organic/inorganic hybrid perovskites (OIHPs) to yield thin films and powders with yellow RTP of NI in air. The triplet excitons of NI are mainly derived from Wannier excitons of inorganic perovskite through energy transfer (ET) for films, and from singlet excitons of NI through intersystem crossing (ISC) for powder. Consequently, the quantum yield (Φ P), lifetime (τ) and color of RTP can be tuned by changing the fluorophore and halide in the perovskites, as well as their solid morphology. A white emission, comprising the blue one from the perovskite and yellow RTP (Φ P = 25.6%, τ = 6.3 ms) from NI, is obtained in Br-based OIHPs in powder. Cl-based OIHPs exhibit fluorescence/phosphorescence dual emission in thin films, and yellow afterglow phosphorescence in powders (Φ P = 56.1%, τ = 35 ms). The unique performance of the OIHPs with RTP can make them widely applicable in the field of information technology as security ink, and white and afterglow LEDs as single luminescent materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa