Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Methods ; 204: 101-109, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35597515

RESUMO

Chinese herbal formulae are the heritage of traditional Chinese medicine (TCM) in treating diseases through thousands of years. The formula function is not just a simple herbal efficacy addition, but produces complex and nonlinear relationships between different herbs and their overall efficacy, which brings challenges to the formula efficacy analysis. In our study, we proposed a model called HPE-GCN that combines graph convolutional networks (GCN) with TCM-defined herbal properties (TCM-HPs) to predict formulae efficacy. In addition, to process the unstructured natural language in the formula text, we proposed a weighting calculation method related to herb frequency and the number of herbs in a formula called Formula-Herb dependence degree (FHDD), to assess the dependency degree of a formula with its herbs. In our research, 214 classic tonic formulae from ancient TCM books such as Synopsis of the Golden Chamber, Jingyue's Complete Works and the Golden Mirror of Medicin were collected as datasets. The performance of HPE-GCN on multi-classification of tonic formulae reached the best result compared with classic machine learning models, such as support vector machine, naive Bayes, logistic regression, gradient boosting decision tree, and K-nearest neighbors. The evaluated index Macro-Precision, Macro-Recall, Macro-F1 of HPE-GCN on the test set were 87.70%, 84.08% and 83.51% respectively, increased by 7.27%, 7.41% and 7.30% respectively from second best compared models. GCN has the advantage of low-dimensional feature expression for herbs and formulae, and is an effective analysis tool for TCM research. HPE-GCN integrates TCM-HPs and fits the complex nonlinear mapping relationship between TCM-HPs and formulae efficacy, which provides new ideas for related research.


Assuntos
Medicamentos de Ervas Chinesas , Teorema de Bayes , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa
2.
Front Genet ; 12: 807825, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003231

RESUMO

Purpose: This study proposes an S-TextBLCNN model for the efficacy of traditional Chinese medicine (TCM) formula classification. This model uses deep learning to analyze the relationship between herb efficacy and formula efficacy, which is helpful in further exploring the internal rules of formula combination. Methods: First, for the TCM herbs extracted from Chinese Pharmacopoeia, natural language processing (NLP) is used to learn and realize the quantitative expression of different TCM herbs. Three features of herb name, herb properties, and herb efficacy are selected to encode herbs and to construct formula-vector and herb-vector. Then, based on 2,664 formulae for stroke collected in TCM literature and 19 formula efficacy categories extracted from Yifang Jijie, an improved deep learning model TextBLCNN consists of a bidirectional long short-term memory (Bi-LSTM) neural network and a convolutional neural network (CNN) is proposed. Based on 19 formula efficacy categories, binary classifiers are established to classify the TCM formulae. Finally, aiming at the imbalance problem of formula data, the over-sampling method SMOTE is used to solve it and the S-TextBLCNN model is proposed. Results: The formula-vector composed of herb efficacy has the best effect on the classification model, so it can be inferred that there is a strong relationship between herb efficacy and formula efficacy. The TextBLCNN model has an accuracy of 0.858 and an F1-score of 0.762, both higher than the logistic regression (acc = 0.561, F1-score = 0.567), SVM (acc = 0.703, F1-score = 0.591), LSTM (acc = 0.723, F1-score = 0.621), and TextCNN (acc = 0.745, F1-score = 0.644) models. In addition, the over-sampling method SMOTE is used in our model to tackle data imbalance, and the F1-score is greatly improved by an average of 47.1% in 19 models. Conclusion: The combination of formula feature representation and the S-TextBLCNN model improve the accuracy in formula efficacy classification. It provides a new research idea for the study of TCM formula compatibility.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa