Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Control Release ; 366: 194-203, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142965

RESUMO

Glioblastoma multiforme (GBM) is one of the most common primary intracranial tumors in the central nervous system with poor prognosis, high invasiveness, risk of recurrence and low survival rate. Thus, it is urgent and vital to develop drug effective delivery systems that efficiently to traverse the blood-brain barrier and targeted transport therapeutic agents into the GBM tumor site for the treatment of brain tumors. Recently, amphiphilic cucurbit[7]uril-polyethylene glycol-hydrophobic Chlorin e6 (CB[7]-PEG-Ce6) polymer was designed, prepared, and self-assembled into micells (CPC) in an aqueous solution, and chemo drug methyl-triazeno-imidazole-carboxamide (MTIC), loaded into the cavity of CB[7] was subsequently coated with hybrid membrane mUMH (HMC3 membrane: macrophage membrane: U87MG membrane = 1:1:2) to afford mUMH@CPC@MTIC. The surface hybrid membrane mUMH potentially enhance the targeted delivery of CPC@MTIC to GBM tissue. Bioactive MTIC was released from the cavity of CB[7] in response to the high spermine level in GBM tumor microenvironments for effective tumor chemotherapy. The biomimetic mUMH@CPC@MTIC exhibited superior antitumor efficacy against GBM in mice. These findings provide new strategies for the design of biomimetic nanoparticle-based drug delivery systems and promising therapy of GBM.


Assuntos
Neoplasias Encefálicas , Dacarbazina/análogos & derivados , Glioblastoma , Animais , Camundongos , Micelas , Glioblastoma/tratamento farmacológico , Microambiente Tumoral , Membrana Celular , Neoplasias Encefálicas/tratamento farmacológico , Imidazóis , Sistemas de Liberação de Fármacos por Nanopartículas
2.
ACS Appl Mater Interfaces ; 16(25): 32027-32044, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38867426

RESUMO

Atherosclerotic plaques exhibit high cholesterol deposition and oxidative stress resulting from high reactive oxygen species (ROS). These are the major components in plaques and the main pro-inflammatory factor. Therefore, it is crucial to develop an effective therapeutic strategy that can simultaneously address the multiple pro-inflammatory factors via removing cholesterol and inhibiting the overaccumulated ROS. In this study, we constructed macrophage membrane-encapsulated biomimetic nanoparticles (MM@DA-pCD@MTX), which not only alleviate cholesterol deposition at the plaque lesion via reverse cholesterol transport but also scavenge the overaccumulated ROS. ß-Cyclodextrin (ß-CD) and the loaded methotrexate (MTX) act synergistically to induce cholesterol efflux for inhibiting the formation of foam cells. Among them, MTX up-regulated the expression of ABCA1, CYP27A1, and SR-B1. ß-CD increased the solubility of cholesterol crystals. In addition, the ROS scavenging property of dopamine (DA) was perfectly preserved in MM@DA-pCD@MTX, which could scavenge the overaccumulated ROS to alleviate the oxidative stress at the plaque lesion. Last but not least, MM-functionalized "homing" targeting of atherosclerotic plaques not only enables the targeted drug delivery but also prolongs in vivo circulation time and drug half-life. In summary, MM@DA-pCD@MTX emerges as a potent, multifunctional therapeutic platform for AS treatment, offering a high degree of biosafety and efficacy in addressing the complex pathophysiology of atherosclerosis.


Assuntos
Aterosclerose , Materiais Biomiméticos , Colesterol , Dopamina , Macrófagos , Metotrexato , Nanopartículas , Dopamina/química , Dopamina/farmacologia , Nanopartículas/química , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/patologia , Camundongos , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Metotrexato/química , Metotrexato/farmacologia , Colesterol/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Células RAW 264.7 , Estresse Oxidativo/efeitos dos fármacos , Portadores de Fármacos/química , beta-Ciclodextrinas
3.
J Control Release ; 372: 874-884, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38977133

RESUMO

Dexamethasone (DEX) has been demonstrated to inhibit the inflammatory corneal neovascularization (CNV). However, the therapeutic efficacy of DEX is limited by the poor bioavailability of conventional eye drops and the increased risk of hormonal glaucoma and cataract associated with prolonged and frequent usage. To address these limitations, we have developed a novel DEX-loaded, reactive oxygen species (ROS)-responsive, controlled-release nanogel, termed DEX@INHANGs. This advanced nanogel system is constructed by the formation of supramolecular host-guest complexes by cyclodextrin (CD) and adamantane (ADA) as a cross-linking force. The introduction of the ROS-responsive material, thioketal (TK), ensures the controlled release of DEX in response to oxidative stress, a characteristic of CNV. Furthermore, the nanogel's prolonged retention on the corneal surface for over 8 h is achieved through covalent binding of the integrin ß1 fusion protein, which enhances its bioavailability. Cytotoxicity assays demonstrated that DEX@INHANGs was not notably toxic to human corneal epithelial cells (HCECs). Furthermore, DEX@INHANGs has been demonstrated to effectively inhibit angiogenesis in vitro. In a rabbit model with chemically burned eyes, the once-daily topical application of DEX@INHANGs was observed to effectively suppress CNV. These results collectively indicate that the nanomedicine formulation of DEX@INHANGs may offer a promising treatment option for CNV, offering significant advantages such as reduced dosing frequency and enhanced patient compliance.


Assuntos
Neovascularização da Córnea , Dexametasona , Espécies Reativas de Oxigênio , Animais , Coelhos , Neovascularização da Córnea/tratamento farmacológico , Dexametasona/administração & dosagem , Dexametasona/farmacocinética , Humanos , Espécies Reativas de Oxigênio/metabolismo , Nanogéis/química , Preparações de Ação Retardada , Córnea/metabolismo , Córnea/efeitos dos fármacos , Masculino , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacocinética , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Linhagem Celular , Polietilenoglicóis/química , Polietilenoglicóis/administração & dosagem , Administração Oftálmica , Adamantano/administração & dosagem , Adamantano/análogos & derivados , Ciclodextrinas/química , Anti-Inflamatórios/administração & dosagem , Polietilenoimina/química , Polietilenoimina/administração & dosagem , Liberação Controlada de Fármacos
4.
Adv Healthc Mater ; 13(20): e2400514, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38652681

RESUMO

Gliomas, the most prevalent primary brain tumors, pose considerable challenges due to their heterogeneity, intricate tumor microenvironment (TME), and blood-brain barrier (BBB), which restrict the effectiveness of traditional treatments like surgery and chemotherapy. This review provides an overview of engineered cell membrane technologies in glioma therapy, with a specific emphasis on targeted drug delivery and modulation of the immune microenvironment. This study investigates the progress in engineered cell membranes, encompassing physical, chemical, and genetic alterations, to improve drug delivery across the BBB and effectively target gliomas. The examination focuses on the interaction of engineered cell membrane-coated nanoparticles (ECM-NPs) with the TME in gliomas, emphasizing their potential to modulate glioma cell behavior and TME to enhance therapeutic efficacy. The review further explores the involvement of ECM-NPs in immunomodulation techniques, highlighting their impact on immune reactions. While facing obstacles related to membrane stability and manufacturing scalability, the review outlines forthcoming research directions focused on enhancing membrane performance. This review underscores the promise of ECM-NPs in surpassing conventional therapeutic constraints, proposing novel approaches for efficacious glioma treatment.


Assuntos
Neoplasias Encefálicas , Membrana Celular , Glioma , Nanopartículas , Microambiente Tumoral , Glioma/tratamento farmacológico , Glioma/terapia , Glioma/metabolismo , Glioma/imunologia , Glioma/patologia , Humanos , Nanopartículas/química , Membrana Celular/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/imunologia , Animais , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Imunomodulação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa