Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(19): e2221440120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126706

RESUMO

Geraniol derived from essential oils of various plant species is widely used in the cosmetic and perfume industries. It is also an essential trait of the pleasant smell of rose flowers. In contrast to other monoterpenes which are produced in plastids via the methyl erythritol phosphate pathway, geraniol biosynthesis in roses relies on cytosolic NUDX1 hydrolase which dephosphorylates geranyl diphosphate (GPP). However, the metabolic origin of cytosolic GPP remains unknown. By feeding Rosa chinensis "Old Blush" flowers with pathway-specific precursors and inhibitors, combined with metabolic profiling and functional characterization of enzymes in vitro and in planta, we show that geraniol is synthesized through the cytosolic mevalonate (MVA) pathway by a bifunctional geranyl/farnesyl diphosphate synthase, RcG/FPPS1, producing both GPP and farnesyl diphosphate (FPP). The downregulation and overexpression of RcG/FPPS1 in rose petals affected not only geraniol and germacrene D emissions but also dihydro-ß-ionol, the latter due to metabolic cross talk of RcG/FPPS1-dependent isoprenoid intermediates trafficking from the cytosol to plastids. Phylogenetic analysis together with functional characterization of G/FPPS orthologs revealed that the G/FPPS activity is conserved among Rosaceae species. Site-directed mutagenesis and molecular dynamic simulations enabled to identify two conserved amino acids that evolved from ancestral FPPSs and contribute to GPP/FPP product specificity. Overall, this study elucidates the origin of the cytosolic GPP for NUDX1-dependent geraniol production, provides insights into the emergence of the RcG/FPPS1 GPPS activity from the ancestral FPPSs, and shows that RcG/FPPS1 plays a key role in the biosynthesis of volatile terpenoid compounds in rose flowers.


Assuntos
Geraniltranstransferase , Rosa , Geraniltranstransferase/genética , Ácido Mevalônico/metabolismo , Rosa/metabolismo , Citosol/metabolismo , Filogenia , Terpenos/metabolismo , Flores/metabolismo
2.
New Phytol ; 241(4): 1829-1839, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38058220

RESUMO

The biosynthesis of specialized metabolites is strictly regulated by environmental inputs such as the day-night cycle, but the underlying mechanisms remain elusive. In Petunia hybrida cv. Mitchell flowers, the biosynthesis and emission of volatile compounds display a diurnal pattern with a peak in the evening to attract nocturnal pollinators. Using petunia flowers as a model system, we found that chromatin level regulation, especially histone acetylation, plays an essential role in mediating the day-night oscillation of the biosynthetic gene network of specialized metabolites. By performing time-course chromatin immunoprecipitation assays for histone modifications, we uncovered that a specific group of genes involved in the regulation, biosynthesis, and emission of floral volatile compounds, which displays the greatest magnitude in day-night oscillating gene expression, is associated with highly dynamic histone acetylation marks H3K9ac and H3K27ac. Specifically, the strongest oscillating genes featured a drastic removal of histone acetylation marks at night, potentially to shut down the biosynthesis of floral volatile compounds during the morning when they are not needed. Inhibiting daytime histone acetylation led to a compromised evening induction of these genes. Overall, our study suggested an active role of chromatin modification in the diurnal oscillation of specialized metabolic network.


Assuntos
Histonas , Petunia , Histonas/metabolismo , Acetilação , Redes e Vias Metabólicas , Processamento de Proteína Pós-Traducional , Cromatina/metabolismo , Flores/fisiologia , Petunia/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant J ; 108(3): 737-751, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403557

RESUMO

Out of the three aromatic amino acids, the highest flux in plants is directed towards phenylalanine, which is utilized to synthesize proteins and thousands of phenolic metabolites contributing to plant fitness. Phenylalanine is produced predominantly in plastids via the shikimate pathway and subsequent arogenate pathway, both of which are subject to complex transcriptional and post-transcriptional regulation. Previously, it was shown that allosteric feedback inhibition of arogenate dehydratase (ADT), which catalyzes the final step of the arogenate pathway, restricts flux through phenylalanine biosynthesis. Here, we show that in petunia (Petunia hybrida) flowers, which typically produce high phenylalanine levels, ADT regulation is relaxed, but not eliminated. Moderate expression of a feedback-insensitive ADT increased flux towards phenylalanine, while high overexpression paradoxically reduced phenylalanine formation. This reduction could be partially, but not fully, recovered by bypassing other known metabolic flux control points in the aromatic amino acid network. Using comparative transcriptomics, reverse genetics, and metabolic flux analysis, we discovered that transcriptional regulation of the d-ribulose-5-phosphate 3-epimerase gene in the pentose phosphate pathway controls flux into the shikimate pathway. Taken together, our findings reveal that regulation within and upstream of the shikimate pathway shares control over phenylalanine biosynthesis in the plant cell.


Assuntos
Hidroliases/genética , Petunia/genética , Petunia/metabolismo , Fenilalanina/biossíntese , Proteínas de Plantas/genética , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Hidroliases/metabolismo , Mutação , Fenilalanina/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/genética , Plastídeos/metabolismo , Metabolismo Secundário/genética , Ácido Chiquímico/metabolismo
4.
J Exp Bot ; 73(2): 555-570, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34129033

RESUMO

Galling insects gain food and shelter by inducing specialized anatomical structures in their plant hosts. Such galls often accumulate plant defensive metabolites protecting the inhabiting insects from predation. We previously found that, despite a marked natural chemopolymorphism in natural populations of Pistacia palaestina, the monoterpene content in Baizongia pistaciae-induced galls is substantially higher than in leaves of their hosts. Here we show a general up-regulation of key structural genes in both the plastidial and cytosolic terpene biosynthetic pathways in galls as compared with non-colonized leaves. Novel prenyltransferases and terpene synthases were functionally expressed in Escherichia coli to reveal their biochemical function. Individual Pistacia trees exhibiting chemopolymorphism in terpene compositions displayed differential up-regulation of selected terpene synthase genes, and the metabolites generated by their gene products in vitro corresponded to the monoterpenes accumulated by each tree. Our results delineate molecular mechanisms responsible for the formation of enhanced monoterpene in galls and the observed intraspecific monoterpene chemodiversity displayed in P. palaestina. We demonstrate that gall-inhabiting aphids transcriptionally reprogram their host terpene pathways by up-regulating tree-specific genes, boosting the accumulation of plant defensive compounds for the protection of colonizing insects.


Assuntos
Afídeos , Pistacia , Animais , Tumores de Planta , Terpenos , Regulação para Cima
5.
Plant Cell ; 31(12): 2996-3014, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31604812

RESUMO

The conversion of etioplasts into chloroplasts in germinating cotyledons is a crucial transition for higher plants, enabling photoautotrophic growth upon illumination. Tight coordination of chlorophyll biosynthesis and photosynthetic complex assembly is critical for this process. ORANGE (OR), a DnaJ-like zinc finger domain-containing protein, was reported to trigger the biogenesis of carotenoid-accumulating plastids by promoting carotenoid biosynthesis and sequestration. Both nuclear and plastidic localizations of OR have been observed. Here, we show that Arabidopsis (Arabidopsis thaliana) OR physically interacts with the transcription factor TCP14 in the nucleus and represses its transactivation activity. Through this interaction, the nucleus-localized OR negatively regulates expression of EARLY LIGHT-INDUCIBLE PROTEINS (ELIPs), reduces chlorophyll biosynthesis, and delays development of thylakoid membranes in the plastids of germinating cotyledons. Nuclear abundance of OR decreased upon illumination. Together with an accumulation of TCP14 in the nucleus, this derepresses chloroplast biogenesis during de-etiolation. TCP14 is epistatic to OR and expression of ELIPs is directly regulated by the binding of TCP14 to Up1 elements in the ELIP promoter regions. Our results demonstrate that the interaction between OR and TCP14 in the nucleus leads to repression of chloroplast biogenesis in etiolated seedlings and provide new insights into the regulation of early chloroplast development.plantcell;31/12/2996/FX1F1fx1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Clorofila/biossíntese , Cloroplastos/metabolismo , Cotilédone/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/efeitos da radiação , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Cotilédone/genética , Estiolamento , Regulação da Expressão Gênica de Plantas/genética , Germinação , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/efeitos da radiação , Iluminação , Plastídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Plântula/metabolismo , Tilacoides/metabolismo , Fatores de Transcrição/genética , Regulação para Cima
6.
Nat Chem Biol ; 16(8): 850-856, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32284603

RESUMO

In plants, phenylalanine biosynthesis occurs via two compartmentally separated pathways. Overexpression of petunia chorismate mutase 2 (PhCM2), which catalyzes the committed step of the cytosolic pathway, increased flux in cytosolic phenylalanine biosynthesis, but paradoxically decreased the overall levels of phenylalanine and phenylalanine-derived volatiles. Concomitantly, the levels of auxins, including indole-3-acetic acid and its precursor indole-3-pyruvic acid, were elevated. Biochemical and genetic analyses revealed the existence of metabolic crosstalk between the cytosolic phenylalanine biosynthesis and tryptophan-dependent auxin biosynthesis mediated by an aminotransferase that uses a cytosolic phenylalanine biosynthetic pathway intermediate, phenylpyruvate, as an amino acceptor for auxin formation.


Assuntos
Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Fenilalanina/biossíntese , Vias Biossintéticas/genética , Citosol/metabolismo , Indóis , Fenilalanina/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Plantas/metabolismo , Triptofano
7.
J Exp Bot ; 72(10): 3704-3722, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33606881

RESUMO

Biosynthesis of secondary metabolites relies on primary metabolic pathways to provide precursors, energy, and cofactors, thus requiring coordinated regulation of primary and secondary metabolic networks. However, to date, it remains largely unknown how this coordination is achieved. Using Petunia hybrida flowers, which emit high levels of phenylpropanoid/benzenoid volatile organic compounds (VOCs), we uncovered genome-wide dynamic deposition of histone H3 lysine 9 acetylation (H3K9ac) during anthesis as an underlying mechanism to coordinate primary and secondary metabolic networks. The observed epigenome reprogramming is accompanied by transcriptional activation at gene loci involved in primary metabolic pathways that provide precursor phenylalanine, as well as secondary metabolic pathways to produce volatile compounds. We also observed transcriptional repression among genes involved in alternative phenylpropanoid branches that compete for metabolic precursors. We show that GNAT family histone acetyltransferase(s) (HATs) are required for the expression of genes involved in VOC biosynthesis and emission, by using chemical inhibitors of HATs, and by knocking down a specific HAT gene, ELP3, through transient RNAi. Together, our study supports that regulatory mechanisms at chromatin level may play an essential role in activating primary and secondary metabolic pathways to regulate VOC synthesis in petunia flowers.


Assuntos
Petunia , Compostos Orgânicos Voláteis , Acetilação , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Histonas/genética , Petunia/genética , Petunia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Mar Drugs ; 15(4)2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28398223

RESUMO

Lycopene cyclases cyclize the open ends of acyclic lycopene (ψ,ψ-carotene) into ß- or ε-ionone rings in the crucial bifurcation step of carotenoid biosynthesis. Among all carotenoid constituents, ß-carotene (ß,ß-carotene) is found in all photosynthetic organisms, except for purple bacteria and heliobacteria, suggesting a ubiquitous distribution of lycopene ß-cyclase activity in these organisms. In this work, we isolated a gene (BfLCYB) encoding a lycopene ß-cyclase from Bangia fuscopurpurea, a red alga that is considered to be one of the primitive multicellular eukaryotic photosynthetic organisms and accumulates carotenoid constituents with both ß- and ε-rings, including ß-carotene, zeaxanthin, α-carotene (ß,ε-carotene) and lutein. Functional complementation in Escherichia coli demonstrated that BfLCYB is able to catalyze cyclization of lycopene into monocyclic γ-carotene (ß,ψ-carotene) and bicyclic ß-carotene, and cyclization of the open end of monocyclic δ-carotene (ε,ψ-carotene) to produce α-carotene. No ε-cyclization activity was identified for BfLCYB. Sequence comparison showed that BfLCYB shares conserved domains with other functionally characterized lycopene cyclases from different organisms and belongs to a group of ancient lycopene cyclases. Although B. fuscopurpurea also synthesizes α-carotene and lutein, its enzyme-catalyzing ε-cyclization is still unknown.


Assuntos
Carotenoides/genética , Carotenoides/metabolismo , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Rodófitas/genética , Rodófitas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular/métodos , Escherichia coli/genética , Licopeno , Fotossíntese/fisiologia , Filogenia , Zeaxantinas/genética , Zeaxantinas/metabolismo , beta Caroteno/genética , beta Caroteno/metabolismo
10.
J Integr Plant Biol ; 56(9): 902-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24942088

RESUMO

Carotene hydroxylases catalyze the hydroxylation of α- and ß-carotene hydrocarbons into xanthophylls. In red algae, ß-carotene is a ubiquitously distributed carotenoid, and hydroxylated carotenoids such as zeaxanthin and lutein are also found. However, no enzyme with carotene hydroxylase activity had been previously identified in red algae. Here, we report the isolation of a gene encoding a cytochrome P450-type carotene hydroxylase (PuCHY1) from Porphyra umbilicalis, a red alga with an ancient origin. Sequence comparisons found PuCHY1 belongs to the CYP97B subfamily, which has members from different photosynthetic organisms ranging from red algae to land plants. Functional complementation in Escherichia coli suggested that PuCHY1 catalyzed the conversion from ß-carotene to zeaxanthin. When we overexpressed PuCHY1 in the Arabidopsis thaliana chy2 mutant, pigment analysis showed a significant accumulation of hydroxylated carotenoids, including neoxanthin, violaxanthin, and lutein in the leaves of transgenic plants. These results confirmed a ß-hydroxylation activity of PuCHY1, and also suggested a possible ϵ-hydroxylation function. The pigment profile and gene expression analyses of the algal thallus under high-light stress suggested that P. umbilicalis is unlikely to operate a partial xanthophyll cycle for photoprotection.


Assuntos
Carotenoides/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Evolução Molecular , Porphyra/enzimologia , Rodófitas/metabolismo , Sequência de Bases , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Primers do DNA , Rodófitas/genética
11.
Indian J Microbiol ; 54(3): 274-83, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24891734

RESUMO

The difference of gene expression between sclerotia-producing and non-sclerotia-producing single spore isolates from Morchella conica were preliminary analyzed by mRNA differential display reverse transcription-polymerase chain reaction (RT-PCR) technique and 67 differential gene fragments were obtained. Fifty-eight of their second PCR products were cloned and sequenced. Thirteen special differential gene fragments related to sclerotial formation were validated by semi-quantitative RT-PCR. Some gene fragments had certain homologies with lipoprotein, cyclin-dependent kinase C-3, glycerophosphoryl diester phosphodiesterase, Rho GDP-dissociation inhibitor, gamma-aminobutyrate permease, OmpA family protein, Transcript antisense to ribosomal RNA protein, sodium-calcium exchange protein and keratin-associated proteins 5, 6. In addition, the putative protein of some DNA fragments had higher similarity with hypothetical protein-coding gene in NCBI database, as well as some were only putative gene fragments. All these fragments were speculated to be the functional gene associated with sclerotial formation in morel.

12.
Science ; 383(6689): 1318-1325, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513014

RESUMO

Plants are constantly exposed to volatile organic compounds (VOCs) that are released during plant-plant communication, within-plant self-signaling, and plant-microbe interactions. Therefore, understanding VOC perception and downstream signaling is vital for unraveling the mechanisms behind information exchange in plants, which remain largely unexplored. Using the hormone-like function of volatile terpenoids in reproductive organ development as a system with a visual marker for communication, we demonstrate that a petunia karrikin-insensitive receptor, PhKAI2ia, stereospecifically perceives the (-)-germacrene D signal, triggering a KAI2-mediated signaling cascade and affecting plant fitness. This study uncovers the role(s) of the intermediate clade of KAI2 receptors, illuminates the involvement of a KAI2ia-dependent signaling pathway in volatile communication, and provides new insights into plant olfaction and the long-standing question about the nature of potential endogenous KAI2 ligand(s).


Assuntos
Furanos , Hidrolases , Petunia , Piranos , Compostos Orgânicos Voláteis , Hidrolases/genética , Hidrolases/metabolismo , Transdução de Sinais , Compostos Orgânicos Voláteis/metabolismo , Petunia/fisiologia , Furanos/metabolismo , Piranos/metabolismo , Sesquiterpenos de Germacrano/metabolismo
13.
Curr Biol ; 33(11): R473-R478, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37279678

RESUMO

Environmental factors such as light, water, minerals, temperature, and other organisms affect plant growth and development. Unlike animals, plants can't escape from unfavorable biotic and abiotic stresses. Thus, they evolved the ability to biosynthesize specific chemicals referred to as plant specialized metabolites in order to facilitate successful interactions with the surrounding environment, as well as with other organisms including plants, insects, microorganisms, and animals. While the exact number of plant specialized metabolites, historically called secondary metabolites, is currently unknown, it has been estimated to range from 200,000 to 1,000,000 compounds. In contrast to the species-, organ- and tissue-specific nature of plant specialized metabolites, primary metabolites are shared by all living organisms, are vital for growth, development and reproduction, and comprise only about 8,000 compounds. The biosynthesis and storage of plant specialized metabolites are developmentally and temporally regulated and depend on biotic and abiotic factors. Specific cell types, subcellular organelles, microcompartments, and/or anatomical structures are often devoted to producing and storing these compounds. The functions of many specialized metabolites are still not fully understood but are generally considered to be essential for the fitness and survival of plants, partially by interacting with other organisms in both mutualistic (for example, attraction of pollinators) and antagonistic (such as defense against herbivores and pathogens) ways. In this primer, we will focus on specialized-metabolite functions in plant defense interactions and on the genetic, molecular, and biochemical mechanisms leading to the structural diversity of specialized metabolites. Though less understood, we will also touch on the mode of action of specialized metabolites in plant defense.


Assuntos
Desenvolvimento Vegetal , Plantas , Animais , Plantas/metabolismo
14.
Nat Commun ; 14(1): 330, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658137

RESUMO

For volatile organic compounds (VOCs) to be released from the plant cell into the atmosphere, they have to cross the plasma membrane, the cell wall, and the cuticle. However, how these hydrophobic compounds cross the hydrophilic cell wall is largely unknown. Using biochemical and reverse-genetic approaches combined with mathematical simulation, we show that cell-wall localized non-specific lipid transfer proteins (nsLTPs) facilitate VOC emission. Out of three highly expressed nsLTPs in petunia petals, which emit high levels of phenylpropanoid/benzenoid compounds, only PhnsLTP3 contributes to the VOC export across the cell wall to the cuticle. A decrease in PhnsLTP3 expression reduces volatile emission and leads to VOC redistribution with less VOCs reaching the cuticle without affecting their total pools. This intracellular build-up of VOCs lowers their biosynthesis by feedback downregulation of phenylalanine precursor supply to prevent self-intoxication. Overall, these results demonstrate that nsLTPs are intrinsic members of the VOC emission network, which facilitate VOC diffusion across the cell wall.


Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/metabolismo , Difusão , Fenilalanina , Parede Celular/metabolismo , Lipídeos
15.
Nat Commun ; 13(1): 1352, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292635

RESUMO

Benzaldehyde, the simplest aromatic aldehyde, is one of the most wide-spread volatiles that serves as a pollinator attractant, flavor, and antifungal compound. However, the enzyme responsible for its formation in plants remains unknown. Using a combination of in vivo stable isotope labeling, classical biochemical, proteomics and genetic approaches, we show that in petunia benzaldehyde is synthesized via the ß-oxidative pathway in peroxisomes by a heterodimeric enzyme consisting of α and ß subunits, which belong to the NAD(P)-binding Rossmann-fold superfamily. Both subunits are alone catalytically inactive but, when mixed in equal amounts, form an active enzyme, which exhibits strict substrate specificity towards benzoyl-CoA and uses NADPH as a cofactor. Alpha subunits can form functional heterodimers with phylogenetically distant ß subunits, but not all ß subunits partner with α subunits, at least in Arabidopsis. Analysis of spatial, developmental and rhythmic expression of genes encoding α and ß subunits revealed that expression of the gene for the α subunit likely plays a key role in regulating benzaldehyde biosynthesis.


Assuntos
Arabidopsis , Petunia , Benzaldeídos , Peroxissomos/metabolismo , Petunia/genética , Petunia/metabolismo , Plantas
16.
Curr Opin Biotechnol ; 69: 112-117, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33429160

RESUMO

Metabolic engineering is embraced as a method to sustainably enhance production of valuable phytochemicals with beneficial properties. However, successful production of these compounds in plants is not always predictable even when the pathways are fully known, frequently due to the lack of comprehensive understanding of plant metabolism as a whole, and interconnections between different primary, secondary, and hormone metabolic networks. Here, we highlight critical hidden constraints, including substrate availability, silent metabolism, and metabolic crosstalk, that impair engineering strategies. We explore how these constraints have historically been manifested in engineering attempts and propose how modern advancements will enable future strategies to overcome these impediments.


Assuntos
Engenharia Metabólica , Plantas , Redes e Vias Metabólicas , Compostos Fitoquímicos , Plantas/genética
17.
Protoplasma ; 258(2): 371-378, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33108535

RESUMO

Chloroplasts are semi-autonomous organelles, with more than 95% of their proteins encoded by the nuclear genome. The chloroplast-to-nucleus retrograde signals are critical for the nucleus to coordinate its gene expression for optimizing or repairing chloroplast functions in response to changing environments. In chloroplasts, the pentatricopeptide-repeat protein GENOMES UNCOUPLED 1 (GUN1) is a master switch that senses aberrant physiological states, such as the photooxidative stress induced by norflurazon (NF) treatment, and represses the expression of photosynthesis-associated nuclear genes (PhANGs). However, it is largely unknown how the retrograde signal is transmitted beyond GUN1. In this study, a protein GUN1-INTERACTING PROTEIN 1 (GIP1), encoded by At3g53630, was identified to interact with GUN1 by different approaches. We demonstrated that GIP1 has both cytosol and chloroplast localizations, and its abundance in chloroplasts is enhanced by NF treatment with the presence of GUN1. Our results suggest that GIP1 and GUN1 may function antagonistically in the retrograde signaling pathway.


Assuntos
Proteínas de Arabidopsis/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Herbicidas/uso terapêutico , Piridazinas/uso terapêutico , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Herbicidas/farmacologia , Humanos , Piridazinas/farmacologia
18.
Yi Chuan ; 31(1): 101-8, 2009 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-19138909

RESUMO

This study was conducted to evaluate the genetic diversity within and among the plants of four ancient tea gardens and two tableland tea gardens form Yunnan Province, China by AFLP technique. The percentage of polymorphic loci (P) of the plants from six tea gardens was 92.31%. The genetic diversity within the six gardens demonstrated by Nei cents genetic diversity (He) was estimated to be 0.1366, while Shannon indices (Ho) were 0.2323. The percentage of polymorphic loci of the four ancient tea populations was 45.55% on average, with a range of 36.44% (Mengsong) to 59.11% (Mengla). But the percentages of polymorphic loci of the plants from two tableland gardens were 13.77% (Yunkang 10) and 24.2% (Menghai Daye), respectively. There was a great genetic difference between ancient tea gardens and tableland tea gardens. The genetic diversity among the plants of the ancient tea garden was higher than those of the sexual tableland tea garden and the clone tableland tea garden based on P valve. The four ancient tea gardens and two tableland gardens could be differentiated with AFLP markers. The results show that AFLP marker is an effective tool in the discrimination of tea germplasm, as well as sundried green tea.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Variação Genética/genética , Chá/genética , China , Filogenia , Reação em Cadeia da Polimerase , Chá/classificação
19.
Yi Chuan ; 30(1): 109-14, 2008 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-18244911

RESUMO

A 4,672 bp DNA sequence including the whole coding region and partial non-coding region of rice blast resistance gene Pi-ta+ has been cloned from Jinghong erect type of common wild rice (Oryza rufipogon Griff) in Yunnan by polymerase chain reaction method. The coding region shares 99.86% and 98.78% identity with the corresponding regions of the reported cultivated rice Yashiro-mochi and Yuanjiang type of common wild rice respectively. There are 4 nucleotides difference in the coding region and 6 in intron of the cloned Pi-ta+ gene,compared with Pi-ta from Yashiro-mochi. Pi-ta+ gene in Jinghong erect type of common wild rice has been proved to be a rare existing Pi-ta+ allele, because there was a alanine rather than a serine at the position 918 within the predicted amino acid sequence of PITA. Pi-ta+ allele can cause disease resistance response to rice blast pathogens in plant cells. Differences in DNA sequence, deduced amino acid sequence and antibacterial spectrum may make the Pi-ta+ allele new resistant characteristics. Finding and cloning of Pi-ta+ allele from Jinghong erect type of common wild rice in Yunnan provides a basement for further utilization of the wild rice resources.


Assuntos
Alelos , Genes de Plantas/genética , Oryza/genética , Oryza/fisiologia , Doenças das Plantas , Sequência de Aminoácidos , China , Clonagem Molecular , DNA Complementar/genética , Íntrons/genética , Técnicas de Amplificação de Ácido Nucleico , Polimorfismo Genético , Análise de Sequência de DNA , Regiões não Traduzidas/genética
20.
Yi Chuan ; 30(6): 776-80, 2008 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-18550503

RESUMO

The cDNA library of Yuanjiang Oryza rifupongon leaf was constructed by using SMART technology. The titers of the non-amplified library and the amplified library were 1.1 x 106 pfu/mL and 3.98 x 107 pfu/mL, respectively. The recombination rate was more than 91%. The DNA sequence length of the most cDNAs in the library was between 500-2 000 bp. Some cDNAs chosen by random were sequenced. After BLAST analysis of some cDNAs, their possible function were predicted. It is found that these cDNAs show 98% similarity to Oryza sativa japonica in the NCBI database. These provided a base for further study on the structure and function of these cDNAs and evolutionary process of Yuanjiang Oryza rifupongon.


Assuntos
Biblioteca Gênica , Oryza/genética , Folhas de Planta/genética , China , Bases de Dados Genéticas , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa