Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanomedicine (Lond) ; 19(11): 995-1012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593053

RESUMO

Aim: To investigate the influence of fluorine in reducing the adsorption of immune-reactive proteins onto PEGylated gold nanoparticles. Methods: Reversible addition fragmentation chain transfer polymerization, the Turkevich method and ligand exchange were used to prepare polymer-coated gold nanoparticles. Subsequent in vitro physicochemical and biological characterizations and proteomic analysis were performed. Results: Fluorine-modified polymers reduced the adsorption of complement and other immune-reactive proteins while potentially improving circulatory times and modulating liver toxicity by reducing apolipoprotein E adsorption. Fluorine actively discouraged phagocytosis while encouraging the adsorption of therapeutic targets, CD209 and signaling molecule calreticulin. Conclusion: This study suggests that the addition of fluorine in the surface coating of nanoparticles could lead to improved performance in nanomedicine designed for the intravenous delivery of cargos.


Nanomedicines are based around the delivery of therapies by tiny, nanosized delivery vehicles. This method offers a much better way of specifically targeting life-threatening diseases. For fast delivery, nanomedicines can be injected into the blood (intravenously); however, this often leads to an unwanted and exaggerated immune response. The immune system is activated by proteins in the blood that attach themselves to nanoparticles through various chemical interactions (the protein corona effect). Fluorine is a chemical routinely used in surfactants such as firefighting foam and more recently in molecular imaging and nanoparticles designed for the delivery of therapies aimed at cancer. While fluorine has great potential to improve the cellular uptake of therapies, little is known about whether it can also help camouflage the nanoparticles against the immune system responses. Here, using fluorinated polymer-coated gold nanoparticles, the authors demonstrate that fluorine reduces uptake by immune cells and is highly effective at reducing the binding of immune system-initiating proteins. This work successfully illustrates the rationale for more widespread investigation of fluorine during the development of polymer-coated nanoparticles designed for the intravenous delivery of nanomedicines.


Assuntos
Flúor , Ouro , Nanopartículas Metálicas , Polietilenoglicóis , Ouro/química , Nanopartículas Metálicas/química , Flúor/química , Adsorção , Polietilenoglicóis/química , Humanos , Polímeros/química , Fagocitose/efeitos dos fármacos , Animais , Propriedades de Superfície , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Camundongos
2.
Adv Sci (Weinh) ; 11(25): e2401340, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38647396

RESUMO

Patients with brain cancers including medulloblastoma lack treatments that are effective long-term and without side effects. In this study, a multifunctional fluoropolymer-engineered iron oxide nanoparticle gene-therapeutic platform is presented to overcome these challenges. The fluoropolymers are designed and synthesized to incorporate various properties including robust anchoring moieties for efficient surface coating, cationic components to facilitate short interference RNA (siRNA) binding, and a fluorinated tail to ensure stability in serum. The blood-brain barrier (BBB) tailored system demonstrates enhanced BBB penetration, facilitates delivery of functionally active siRNA to medulloblastoma cells, and delivers a significant, almost complete block in protein expression within an in vitro extracellular acidic environment (pH 6.7) - as favored by most cancer cells. In vivo, it effectively crosses an intact BBB, provides contrast for magnetic resonance imaging (MRI), and delivers siRNA capable of slowing tumor growth without causing signs of toxicity - meaning it possesses a safe theranostic function. The pioneering methodology applied shows significant promise in the advancement of brain and tumor microenvironment-focused MRI-siRNA theranostics for the better treatment and diagnosis of medulloblastoma.


Assuntos
Barreira Hematoencefálica , Inativação Gênica , Meduloblastoma , RNA Interferente Pequeno , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/terapia , Barreira Hematoencefálica/metabolismo , Animais , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/administração & dosagem , Humanos , Modelos Animais de Doenças , Nanopartículas de Magnetita/química , Imageamento por Ressonância Magnética/métodos , Linhagem Celular Tumoral , Polímeros/química , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/terapia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa