Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Plant Physiol ; 191(2): 904-924, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36459587

RESUMO

Intracellular movement is an important step for the initial spread of virus in plants during infection. This process requires virus-encoded movement proteins (MPs) and their interaction with host factors. Despite the large number of known host factors involved in the movement of different viruses, little is known about host proteins that interact with one of the MPs encoded by potexviruses, the triple-gene-block protein 3 (TGBp3). The main obstacle lies in the relatively low expression level of potexviral TGBp3 in hosts and the weak or transient nature of interactions. Here, we used TurboID-based proximity labeling to identify the network of proteins directly or indirectly interacting with the TGBp3 of a potexvirus, Bamboo mosaic virus (BaMV). Endoplasmic reticulum (ER) luminal-binding protein 4 and calreticulin 3 of Nicotiana benthamiana (NbBiP4 and NbCRT3, respectively) associated with the functional TGBp3-containing BaMV movement complexes, but not the movement-defective mutant, TGBp3M. Fluorescent microscopy revealed that TGBp3 colocalizes with NbBiP4 or NbCRT3 and the complexes move together along ER networks to cell periphery in N. benthamiana. Loss- and gain-of-function experiments revealed that NbBiP4 or NbCRT3 is required for the efficient spread and accumulation of BaMV in infected leaves. In addition, overexpression of NbBiP4 or NbCRT3 enhanced the targeting of BaMV TGBp1 to plasmodesmata (PD), indicating that NbBiP4 and NbCRT3 interact with TGBp3 to promote the intracellular transport of virion cargo to PD that facilitates virus cell-to-cell movement. Our findings revealed additional roles for NbBiP4 and NbCRT3 in BaMV intracellular movement through ER networks or ER-derived vesicles to PD, which enhances the spread of BaMV in N. benthamiana.


Assuntos
Potexvirus , Proteínas Virais , Proteínas Virais/metabolismo , Proteínas de Transporte/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Plantas/metabolismo , Nicotiana/metabolismo , Retículo Endoplasmático/metabolismo
2.
Plant Physiol ; 188(2): 1061-1080, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34747475

RESUMO

Infection cycles of viruses are highly dependent on membrane-associated host factors. To uncover the infection cycle of Bamboo mosaic virus (BaMV) in detail, we purified the membrane-associated viral complexes from infected Nicotiana benthamiana plants and analyzed the involved host factors. Four isoforms of voltage-dependent anion channel (VDAC) proteins on the outer membrane of mitochondria were identified due to their upregulated expression in the BaMV complex-enriched membranous fraction. Results from loss- and gain-of-function experiments indicated that NbVDAC2, -3, and -4 are essential for efficient BaMV accumulation. During BaMV infection, all NbVDACs concentrated into larger aggregates, which overlapped and trafficked with BaMV virions to the structure designated as the "dynamic BaMV-induced complex." Besides the endoplasmic reticulum and mitochondria, BaMV replicase and double-stranded RNAs were also found in this complex, suggesting the dynamic BaMV-induced complex is a replication complex. Yeast two-hybrid and pull-down assays confirmed that BaMV triple gene block protein 1 (TGBp1) could interact with NbVDACs. Confocal microscopy revealed that TGBp1 is sufficient to induce NbVDAC aggregates, which suggests that TGBp1 may play a pivotal role in the NbVDAC-virion complex. Collectively, these findings indicate that NbVDACs may associate with the dynamic BaMV-induced complex via TGBp1 and NbVDAC2, -3, or -4 and can promote BaMV accumulation. This study reveals the involvement of mitochondrial proteins in a viral complex and virus infection.


Assuntos
Proteínas de Membrana/metabolismo , Vírus do Mosaico/patogenicidade , Nicotiana/virologia , Doenças das Plantas/virologia , Potexvirus/patogenicidade , RNA Polimerase Dependente de RNA/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Interações Hospedeiro-Parasita
3.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176135

RESUMO

Plants are vulnerable to the challenges of unstable environments and pathogen infections due to their immobility. Among various stress conditions, viral infection is a major threat that causes significant crop loss. In response to viral infection, plants undergo complex molecular and physiological changes, which trigger defense and morphogenic pathways. Transcription factors (TFs), and their interactions with cofactors and cis-regulatory genomic elements, are essential for plant defense mechanisms. The transcriptional regulation by TFs is crucial in establishing plant defense and associated activities during viral infections. Therefore, identifying and characterizing the critical genes involved in the responses of plants against virus stress is essential for the development of transgenic plants that exhibit enhanced tolerance or resistance. This article reviews the current understanding of the transcriptional control of plant defenses, with a special focus on NAC, MYB, WRKY, bZIP, and AP2/ERF TFs. The review provides an update on the latest advances in understanding how plant TFs regulate defense genes expression during viral infection.


Assuntos
Vírus de Plantas , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Estresse Fisiológico/genética
4.
Anal Chem ; 94(30): 10626-10635, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35866879

RESUMO

Barcoding and pooling cells for processing as a composite sample are critical to minimize technical variability in multiplex technologies. Fluorescent cell barcoding has been established as a standard method for multiplexing in flow cytometry analysis. In parallel, mass-tag barcoding is routinely used to label cells for mass cytometry. Barcode reagents currently used label intracellular proteins in fixed and permeabilized cells and, therefore, are not suitable for studies with live cells in long-term culture prior to analysis. In this study, we report the development of fluorescent palladium-based hybrid-tag nanotrackers to barcode live cells for flow and mass cytometry dual-modal readout. We describe the preparation, physicochemical characterization, efficiency of cell internalization, and durability of these nanotrackers in live cells cultured over time. In addition, we demonstrate their compatibility with standardized cytometry reagents and protocols. Finally, we validated these nanotrackers for drug response assays during a long-term coculture experiment with two barcoded cell lines. This method represents a new and widely applicable advance for fluorescent and mass-tag barcoding that is independent of protein expression levels and can be used to label cells before long-term drug studies.


Assuntos
Processamento Eletrônico de Dados , Corantes Fluorescentes , Linhagem Celular , Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Proteômica
5.
J Virol ; 95(20): e0083121, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34379502

RESUMO

Many positive-strand (+) RNA viruses produce subgenomic RNAs (sgRNAs) in the infection cycle through the combined activities of viral replicase and host proteins. However, knowledge about host proteins involved in direct sgRNA promoter recognition is limited. Here, in the partially purified replicase complexes from Bamboo mosaic virus (BaMV)-infected tissue, we have identified the Nicotiana benthamiana photosystem II oxygen-evolving complex protein, NbPsbO1, which specifically interacted with the promoter of sgRNA but not that of genomic RNA (gRNA). Silencing of NbPsbO1 expression suppressed BaMV accumulation in N. benthamiana protoplasts without affecting viral gRNA replication. Overexpression of wild-type NbPsbO1 stimulated BaMV sgRNA accumulation. Fluorescent microscopy examination revealed that the fluorescence associated with NbPsbO1 was redistributed from chloroplast granal thylakoids to stroma in BaMV-infected cells. Overexpression of a mislocalized mutant of NbPsbO1, dTPPsbO1-T7, inhibited BaMV RNA accumulation in N. benthamiana, whereas overexpression of an NbPsbO1 derivative, sPsbO1-T7, designed to be targeted to chloroplast stroma, upregulated the sgRNA level. Furthermore, depletion of NbPsbO1 in BaMV RdRp preparation significantly inhibited sgRNA synthesis in vitro but exerted no effect on (+) or (-) gRNA synthesis, which indicates that NbPsbO1 is required for efficient sgRNA synthesis. These results reveal a novel role for NbPsbO1 in the selective enhancement of BaMV sgRNA transcription, most likely via direct interaction with the sgRNA promoter. IMPORTANCE Production of subgenomic RNAs (sgRNAs) for efficient translation of downstream viral proteins is one of the major strategies adapted for viruses that contain a multicistronic RNA genome. Both viral genomic RNA (gRNA) replication and sgRNA transcription rely on the combined activities of viral replicase and host proteins, which recognize promoter regions for the initiation of RNA synthesis. However, compared to the cis-acting elements involved in the regulation of sgRNA synthesis, the host factors involved in sgRNA promoter recognition mostly remain to be elucidated. Here, we found a chloroplast protein, NbPsbO1, which specifically interacts with Bamboo mosaic virus (BaMV) sgRNA promoter. We showed that NbPsbO1 is relocated to the BaMV replication site in BaMV-infected cells and demonstrated that NbPsbO1 is required for efficient BaMV sgRNA transcription but exerts no effect on gRNA replication. This study provides a new insight into the regulating mechanism of viral gRNA and sgRNA synthesis.


Assuntos
Nicotiana/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Potexvirus/metabolismo , Regiões 3' não Traduzidas , Cloroplastos/metabolismo , Proteínas de Plantas/genética , Potexvirus/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA/genética , RNA/metabolismo , RNA Viral/genética , RNA Polimerase Dependente de RNA , Nicotiana/genética , Nicotiana/virologia , Proteínas Virais/metabolismo , Proteínas do Complexo da Replicase Viral/genética , Proteínas do Complexo da Replicase Viral/metabolismo , Replicação Viral/fisiologia
6.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077222

RESUMO

Plant ARGONAUTES (AGOs) play a significant role in the defense against viral infection. Previously, we have demonstrated that AGO5s encoded in Phalaenopsis aphrodite subsp. formosana (PaAGO5s) took an indispensable part in defense against major viruses. To understand the underlying defense mechanism, we cloned PaAGO5s promoters (pPaAGO5s) and analyzed their activity in transgenic Nicotiana benthamiana using ß-glucuronidase (GUS) as a reporter gene. GUS activity analyses revealed that during Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) infections, pPaAGO5b activity was significantly increased compared to pPaAGO5a and pPaAGO5c. Analysis of pPaAGO5b 5'-deletion revealed that pPaAGO5b_941 has higher activity during virus infection. Further, yeast one-hybrid analysis showed that the transcription factor NbMYB30 physically interacted with pPaAGO5b_941 to enhance its activity. Overexpression and silencing of NbMYB30 resulted in up- and downregulation of GUS expression, respectively. Exogenous application and endogenous measurement of phytohormones have shown that methyl jasmonate and salicylic acid respond to viral infections. NbMYB30 overexpression and its closest related protein, PaMYB30, in P. aphrodite subsp. formosana reduced CymMV accumulation in P. aphrodite subsp. formosana. Based on these discoveries, this study uncovers the interaction between virus-responsive promoter and the corresponding transcription factor in plants.


Assuntos
Potexvirus , Viroses , Plantas , Potexvirus/genética , Nicotiana/genética , Fatores de Transcrição
7.
Angew Chem Int Ed Engl ; 61(29): e202204420, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35543248

RESUMO

Acinetobacter baumannii is currently posing a serious threat to global health. Lipopolysaccharide (LPS) is a potent virulence factor of pathogenic Gram-negative bacteria. To explore the antigenic properties of A. baumannii LPS, four Kdo-containing inner core glycans from A. baumannii strain ATCC 17904 were synthesized. A flexible and divergent method based on the use of the orthogonally substituted α-Kdo-(2→5)-Kdo disaccharides was developed. Selective removal of different protecting groups in these key precursors and elongation of sugar chain via α-stereocontrolled coupling with 5,7-O-di-tert-butylsilylene or 5-O-benzoyl protected Kdo thioglycosides and 2-azido-2-deoxyglucosyl thioglycoside allowed efficient assembly of the target molecules. Glycan microarray analysis of sera from infected patients revealed that the 4,5-branched Kdo trimer was a potential antigenic epitope, which is attractive for further immunological research to develop carbohydrate vaccines against A. baumannii.


Assuntos
Acinetobacter baumannii , Lipopolissacarídeos , Carboidratos , Dissacarídeos/química , Humanos , Lipopolissacarídeos/química , Oligossacarídeos/química , Polissacarídeos
8.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31511381

RESUMO

Bamboo mosaic virus (BaMV), a member of the Potexvirus genus, has a monopartite positive-strand RNA genome on which five open reading frames (ORFs) are organized. ORF1 encodes a 155-kDa nonstructural protein (REPBaMV) that plays a core function in replication/transcription of the viral genome. To find out cellular factors modulating the replication efficiency of BaMV, a putative REPBaMV-associated protein complex from Nicotiana benthamiana leaf was isolated on an SDS-PAGE gel, and a few proteins preferentially associated with REPBaMV were identified by tandem mass spectrometry. Among them, proliferating cell nuclear antigen (PCNA) was particularly noted. Overexpression of PCNA strongly suppressed the accumulation of BaMV coat protein and RNAs in leaf protoplasts. In addition, PCNA exhibited an inhibitory effect on BaMV polymerase activity. A pulldown assay confirmed a binding capability of PCNA toward BaMV genomic RNA. Mutations at D41 or F114 residues, which are critical for PCNA to function in nuclear DNA replication and repair, disabled PCNA from binding BaMV genomic RNA as well as suppressing BaMV replication. This suggests that PCNA bound to the viral RNA may interfere with the formation of a potent replication complex or block the replication process. Interestingly, BaMV is almost invisible in the newly emerging leaves where PCNA is actively expressed. Accordingly, PCNA is probably one of the factors restricting the proliferation of BaMV in young leaves. Foxtail mosaic virus and Potato virus X were also suppressed by PCNA in the protoplast experiment, suggesting a general inhibitory effect of PCNA on the replication of potexviruses.IMPORTANCE Knowing the dynamic interplay between plant RNA viruses and their host is a basic step toward first understanding how the viruses survive the plant defense mechanisms and second gaining knowledge of pathogenic control in the field. This study found that plant proliferating cell nuclear antigen (PCNA) imposes a strong inhibition on the replication of several potexviruses, including Bamboo mosaic virus, Foxtail mosaic virus, and Potato virus X Based on the tests on Bamboo mosaic virus, PCNA is able to bind the viral genomic RNA, and this binding is a prerequisite for the protein to suppress the virus replication. This study also suggests that PCNA plays an important role in restricting the proliferation of potexviruses in the rapidly dividing tissues of plants.


Assuntos
Potexvirus/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Proteínas não Estruturais Virais/metabolismo , Regiões 3' não Traduzidas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genoma Viral/genética , Folhas de Planta/virologia , Proteínas de Plantas/genética , Potexvirus/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Nicotiana/metabolismo , Nicotiana/virologia , Proteínas não Estruturais Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/fisiologia
9.
New Phytol ; 224(2): 804-817, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31283838

RESUMO

RNA silencing is a major defense mechanism against invading viruses in plants. Argonaute proteins (AGOs) are the key players in RNA silencing. The number of AGO family members involved varies depending on the plant species and they play distinct or sometimes redundant roles in antiviral defense. By using a virus-induced gene silencing technique, it was found that Nicotiana benthamiana AGO1 restricted Bamboo mosaic virus (BaMV) accumulation, but NbAGO10, the closest paralog of NbAGO1, positively regulated BaMV accumulation. Immunoprecipitation assay revealed BaMV virus-derived small interfering RNAs (vsiRNAs) in NbAGO10 complexes. Transient overexpression of NbAGO10 increased BaMV RNA accumulation, but with co-expression of NbAGO1, BaMV RNA accumulation was reduced, which suggests that NbAGO10 may have competed with NbAGO1 for sequestering BaMV vsiRNA and prevented the formation of RNA-induced silencing complexes. In addition, overexpression of NbAGO10 decreased BaMV vsiRNA accumulation. A host enzyme, small RNA degrading nuclease 1 (SDN1), also was found to interact with NbAGO10 on in vivo pull-down assay. Silencing of SDN1 elevated BaMV vsiRNA level and decreased BaMV RNA accumulation in N. benthamiana, indicating that NbAGO10 might recruit SDN1 for BaMV vsiRNA degradation. The results herein suggested that NbAGO10 plays a pro-viral role by BaMV vsiRNA sequestration and degradation.


Assuntos
Proteínas Argonautas/metabolismo , Nicotiana/metabolismo , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Potexvirus , Replicação Viral/fisiologia , Proteínas Argonautas/genética , DNA de Plantas/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Ligação Proteica , RNA Viral/metabolismo
10.
J Exp Bot ; 70(18): 4657-4670, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31552430

RESUMO

Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV infection in Nicotiana benthamiana leaves upregulated the expression of ATGs but did not trigger cell death. The induction of ATGs, which possibly triggers autophagy, increased rather than diminished BaMV accumulation in the leaves, as revealed by gene knockdown and transient expression experiments. Furthermore, the inhibitor 3-methyladenine blocked autophagosome formation and the autophagy inducer rapamycin, which negatively and positively affected BaMV accumulation, respectively. Pull-down experiments with an antibody against orange fluorescent protein (OFP)-NbATG8f, an autophagosome marker protein, showed that both plus- and minus-sense BaMV RNAs could associate with NbATG8f. Confocal microscopy revealed that ATG8f-enriched vesicles possibly derived from chloroplasts contained both the BaMV viral RNA and its replicase. Thus, BaMV infection may induce the expression of ATGs possibly via autophagy to selectively engulf a portion of viral RNA-containing chloroplast. Virus-induced vesicles enriched with ATG8f could provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism.


Assuntos
Autofagia , Nicotiana/fisiologia , Nicotiana/virologia , Potexvirus/fisiologia , Replicação Viral , Cloroplastos/metabolismo , Doenças das Plantas/virologia
11.
Mol Plant Microbe Interact ; 30(8): 631-645, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28459172

RESUMO

Plant viruses may exhibit age-dependent tissue preference in their hosts but the underlying mechanisms are not well understood. In this study, we provide several lines of evidence to reveal the determining role of a protein of the Nicotiana benthamiana chloroplast Hsp70 (NbcpHsp70) family, NbcpHsp70-2, involved in the preference of Bamboo mosaic virus (BaMV) to infect older tissues. NbcpHsp70 family proteins were identified in complexes pulled down with BaMV replicase as the bait. Among the isoforms of NbcpHsp70, only the specific silencing of NbcpHsp70-2 resulted in the significant decrease of BaMV RNA in N. benthamiana protopalsts, indicating that NbcpHsp70-2 is involved in the efficient replication of BaMV RNA. We further identified the age-dependent import regulation signal contained in the transit peptide of NbcpHsp70-2. Deletion, overexpression, and substitution experiments revealed that the signal in the transit peptide of NbcpHsp70-2 is crucial for both the import of NbcpHsp70-2 into older chloroplasts and the preference of BaMV for infecting older leaves of N. benthamiana. Together, these data demonstrated that BaMV may exploit a cellular age-dependent transportation mechanism to target a suitable environment for viral replication.


Assuntos
Cloroplastos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Nicotiana/crescimento & desenvolvimento , Nicotiana/virologia , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Potexvirus/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Regulação para Baixo/genética , Técnicas de Silenciamento de Genes , Inativação Gênica , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Imunoprecipitação , Mutação/genética , Fenótipo , Doenças das Plantas/virologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Protoplastos/metabolismo , RNA Viral/metabolismo , Nicotiana/metabolismo
12.
J Exp Bot ; 68(17): 4765-4774, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28992255

RESUMO

To establish a successful infection, a virus needs to replicate and move cell-to-cell efficiently. We investigated whether one of the genes upregulated in Nicotiana benthamiana after Bamboo mosaic virus (BaMV) inoculation was involved in regulating virus movement. We revealed the gene to be a plasma membrane-associated cation-binding protein 1-like protein, designated NbPCaP1L. The expression of NbPCaP1L in N. benthamiana was knocked down using Tobacco rattle virus-based gene silencing and consequently the accumulation of BaMV increased significantly to that of control plants. Further analysis indicated no significant difference in the accumulation of BaMV in NbPCaP1L knockdown and control protoplasts, suggesting NbPCaP1L may affect cell-to-cell movement of BaMV. Using a viral vector expressing green fluorescent protein in the knockdown plants, the mean area of viral focus, as determined by fluorescence, was found to be larger in NbPCaP1L knockdown plants. Orange fluorescence protein (OFP)-fused NbPCaP1L, NbPCaP1L-OFP, was expressed in N. benthamiana and reduced the accumulation of BaMV to 46%. To reveal the possible interaction of viral protein with NbPCaP1L, we performed yeast two-hybrid and co-immunoprecipitation experiments. The results indicated that NbPCaP1L interacted with BaMV replicase. The results also suggested that NbPCaP1L could trap the BaMV movement RNP complex via interaction with the viral replicase in the complex and so restricted viral cell-to-cell movement.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Nicotiana/genética , Proteínas de Plantas/genética , Potexvirus/fisiologia , Regulação para Cima , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo , Nicotiana/metabolismo , Nicotiana/virologia
13.
Mol Plant Microbe Interact ; 27(11): 1211-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25025779

RESUMO

In this study, we investigated the fine regulation of cell-to-cell movement of Bamboo mosaic virus (BaMV). We report that the coat protein (CP) of BaMV is phosphorylated in planta at position serine 241 (S241), in a process involving Nicotiana benthamiana casein kinase 2α (NbCK2α). BaMV CP and NbCK2α colocalize at the plasmodesmata, suggesting that phosphorylation of BaMV may be involved in its movement. S241 was mutated to examine the effects of temporal and spatial dysregulation of phosphorylation on i) the interactions between CP and viral RNA and ii) the regulation of cell-to-cell movement. Replacement of S241 with alanine did not affect RNA binding affinity but moderately impaired cell-to-cell movement. A negative charge at position 241 reduced the ability of CP to bind RNA and severely interfered with cell-to-cell movement. Deletion of residues 240 to 242 increased the affinity of CP to viral RNA and dramatically impaired cell-to-cell movement. A threonine at position 241 changed the binding preference of CP toward genomic RNA and inhibited cell-to-cell movement. Together, these results reveal a fine regulatory mechanism for the cell-to-cell movement of BaMV, which involves the modulation of RNA binding affinity through appropriate phosphorylation of CP by NbCK2α.


Assuntos
Proteínas do Capsídeo/metabolismo , Caseína Quinase II/metabolismo , Nicotiana/enzimologia , Doenças das Plantas/virologia , Potexvirus/fisiologia , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Caseína Quinase II/genética , Genes Reporter , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Fosforilação , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plasmodesmos/virologia , Potexvirus/genética , Potexvirus/ultraestrutura , Ligação Proteica , RNA Viral/genética , Proteínas Recombinantes de Fusão , Nicotiana/citologia , Nicotiana/genética , Nicotiana/virologia
14.
Plant Biotechnol J ; 12(3): 330-43, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24283212

RESUMO

Plant virus-based gene-silencing vectors have been extensively and successfully used to elucidate functional genomics in plants. However, only limited virus-induced gene-silencing (VIGS) vectors can be used in both monocot and dicot plants. Here, we established a dual gene-silencing vector system based on Bamboo mosaic virus (BaMV) and its satellite RNA (satBaMV). Both BaMV and satBaMV vectors could effectively silence endogenous genes in Nicotiana benthamiana and Brachypodium distachyon. The satBaMV vector could also silence the green fluorescent protein (GFP) transgene in GFP transgenic N. benthamiana. GFP transgenic plants co-agro-inoculated with BaMV and satBaMV vectors carrying sulphur and GFP genes, respectively, could simultaneously silence both genes. Moreover, the silenced plants could still survive with the silencing of genes essential for plant development such as heat-shock protein 90 (Hsp90) and Hsp70. In addition, the satBaMV- but not BaMV-based vector could enhance gene-silencing efficiency in newly emerging leaves of N. benthamiana deficient in RNA-dependant RNA polymerase 6. The dual gene-silencing vector system of BaMV and satBaMV provides a novel tool for comparative functional studies in monocot and dicot plants.


Assuntos
Brachypodium/genética , Vetores Genéticos/genética , Nicotiana/genética , Potexvirus/genética , RNA Satélite/genética , RNA Viral/genética , Inativação Gênica , Proteínas de Fluorescência Verde , Folhas de Planta/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , RNA Polimerase Dependente de RNA/genética , Plântula/genética , Especificidade da Espécie
15.
PLoS Pathog ; 8(5): e1002726, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22654666

RESUMO

Host factors play crucial roles in the replication of plus-strand RNA viruses. In this report, a heat shock protein 90 homologue of Nicotiana benthamiana, NbHsp90, was identified in association with partially purified replicase complexes from BaMV-infected tissue, and shown to specifically interact with the 3' untranslated region (3' UTR) of BaMV genomic RNA, but not with the 3' UTR of BaMV-associated satellite RNA (satBaMV RNA) or that of genomic RNA of other viruses, such as Potato virus X (PVX) or Cucumber mosaic virus (CMV). Mutational analyses revealed that the interaction occurs between the middle domain of NbHsp90 and domain E of the BaMV 3' UTR. The knockdown or inhibition of NbHsp90 suppressed BaMV infectivity, but not that of satBaMV RNA, PVX, or CMV in N. benthamiana. Time-course analysis further revealed that the inhibitory effect of 17-AAG is significant only during the immediate early stages of BaMV replication. Moreover, yeast two-hybrid and GST pull-down assays demonstrated the existence of an interaction between NbHsp90 and the BaMV RNA-dependent RNA polymerase. These results reveal a novel role for NbHsp90 in the selective enhancement of BaMV replication, most likely through direct interaction with the 3' UTR of BaMV RNA during the initiation of BaMV RNA replication.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Nicotiana/virologia , Proteínas de Plantas/metabolismo , Potexvirus/genética , Potexvirus/fisiologia , RNA Satélite/metabolismo , RNA Viral/metabolismo , Regiões 3' não Traduzidas , Benzoquinonas/farmacologia , Técnicas de Inativação de Genes , Proteínas de Choque Térmico HSP90/genética , Lactamas Macrocíclicas/farmacologia , Conformação de Ácido Nucleico , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , RNA Satélite/genética , RNA Viral/genética , Nicotiana/metabolismo , Replicação Viral
16.
Virus Res ; 334: 199179, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481165

RESUMO

The argonaute (AGO) family proteins play a crucial role in preventing viral invasions through the plant antiviral RNA silencing pathway, with distinct AGO proteins recruited for specific antiviral mechanisms. Our previous study revealed that Nicotiana benthamiana AGO5 (NbAGO5) expression was significantly upregulated in response to bamboo mosaic virus (BaMV) infection. However, the roles of NbAGO5 in antiviral mechanisms remained to be explored. In this research, we examined the antiviral functions of NbAGO5 in the infections of different viruses. It was found that the accumulation of NbAGO5 was induced not only at the RNA but also at the protein level following the infections of BaMV, potato virus X (PVX), tobacco mosaic virus (TMV), and cucumber mosaic virus (CMV) in N. benthamiana. To explore the antiviral mechanism and regulatory function of NbAGO5, we generated NbAGO5 overexpression (OE-NbAGO5) and knockout (nbago5) transgenic N. benthamiana lines. Our findings reveal that NbAGO5 provides defense against BaMV, PVX, TMV, and a mutant CMV deficient in 2b gene, but not against the wild-type CMV and turnip mosaic virus (TuMV). Through affinity purification and small RNA northern blotting, we demonstrated that NbAGO5 exerts its antiviral function by binding to viral small interfering RNAs (vsiRNAs). Moreover, we observed that CMV 2b and TuMV HC-Pro interact with NbAGO5, triggering its degradation via the 26S proteasome and autophagy pathways, thereby allowing these viruses to overcome NbAGO5-mediated defense. In addition, TuMV HC-Pro provides another line of counter-defense by interfering with vsiRNA binding by NbAGO5. Our study provides further insights into the antiviral RNA interference mechanism and the complex interplay between NbAGO5 and plant viruses.


Assuntos
Cucumovirus , Infecções por Citomegalovirus , Nicotiana , Antivirais/metabolismo , Interferência de RNA , Cucumovirus/genética , RNA/metabolismo , Doenças das Plantas
17.
Semin Immunopathol ; 45(1): 43-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36635516

RESUMO

High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy. Its diagnosis at advanced stage compounded with its excessive genomic and cellular heterogeneity make curative treatment challenging. Two critical therapeutic challenges to overcome are carboplatin resistance and lack of response to immunotherapy. Carboplatin resistance results from diverse cell autonomous mechanisms which operate in different combinations within and across tumors. The lack of response to immunotherapy is highly likely to be related to an immunosuppressive HGSOC tumor microenvironment which overrides any clinical benefit. Results from a number of studies, mainly using transcriptomics, indicate that the immune tumor microenvironment (iTME) plays a role in carboplatin response. However, in patients receiving treatment, the exact mechanistic details are unclear. During the past decade, multiplex single-cell proteomic technologies have come to the forefront of biomedical research. Mass cytometry or cytometry by time-of-flight, measures up to 60 parameters in single cells that are in suspension. Multiplex cellular imaging technologies allow simultaneous measurement of up to 60 proteins in single cells with spatial resolution and interrogation of cell-cell interactions. This review suggests that functional interplay between cell autonomous responses to carboplatin and the HGSOC immune tumor microenvironment could be clarified through the application of multiplex single-cell proteomic technologies. We conclude that for better clinical care, multiplex single-cell proteomic technologies could be an integral component of multimodal biomarker development that also includes genomics and radiomics. Collection of matched samples from patients before and on treatment will be critical to the success of these efforts.


Assuntos
Neoplasias Ovarianas , Proteômica , Feminino , Humanos , Carboplatina/uso terapêutico , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/etiologia , Neoplasias Ovarianas/terapia , Microambiente Tumoral
18.
J Virol ; 85(17): 8829-40, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21715476

RESUMO

The identification of cellular proteins associated with virus replicase complexes is crucial to our understanding of virus-host interactions, influencing the host range, replication, and virulence of viruses. A previous in vitro study has demonstrated that partially purified Bamboo mosaic virus (BaMV) replicase complexes can be employed for the replication of both BaMV genomic and satellite BaMV (satBaMV) RNAs. In this study, we investigated the BaMV and satBaMV 3' untranslated region (UTR) binding proteins associated with these replicase complexes. Two cellular proteins with molecular masses of ∼35 and ∼55 kDa were specifically cross-linked with RNA elements, whereupon the ∼35-kDa protein was identified as the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Gel mobility shift assays confirmed the direct interaction of GAPDH with the 3' UTR sequences, and competition gel shift analysis revealed that GAPDH binds preferentially to the positive-strand BaMV and satBaMV RNAs over the negative-strand RNAs. It was observed that the GAPDH protein binds to the pseudoknot poly(A) tail of BaMV and stem-loop-C poly(A) tail of satBaMV 3' UTR RNAs. It is important to note that knockdown of GAPDH in Nicotiana benthamiana enhances the accumulation of BaMV and satBaMV RNA; conversely, transient overexpression of GAPDH reduces the accumulation of BaMV and satBaMV RNA. The recombinant GAPDH principally inhibits the synthesis of negative-strand RNA in exogenous RdRp assays. These observations support the contention that cytosolic GAPDH participates in the negative regulation of BaMV and satBaMV RNA replication.


Assuntos
Interações Hospedeiro-Patógeno , Nicotiana/enzimologia , Potexvirus/fisiologia , RNA Satélite/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral , Regiões 3' não Traduzidas , Ensaio de Desvio de Mobilidade Eletroforética , Gliceraldeído 3-Fosfato Desidrogenase (NADP+) , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Nicotiana/virologia
19.
Methods Mol Biol ; 2424: 59-94, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34918287

RESUMO

Mass cytometry aka Cytometry by Time-Of-Flight (CyTOF) is one of several recently developed multiparametric single-cell technologies designed to address cellular heterogeneity within healthy and diseased tissue. Mass cytometry is an adaptation of flow cytometry in which antibodies are labeled with stable heavy metal isotopes and the readout is by time-of-flight mass spectrometry. With minimal spillover between channels, mass cytometry enables readouts of up to 60 parameters per single cell. Critically, mass cytometry can identify minority cell populations that are lost in bulk tissue analysis. Mass cytometry has been used to great effect for the study of immune cells. We have extended its use to examine single cells within disaggregated solid tissues, specifically freshly resected tubo-ovarian high-grade serous tumors. Here we detail our protocols designed to ensure the production of high-quality single-cell datasets. The methodology can be modified to accommodate the study of other solid tissues.


Assuntos
Neoplasias Ovarianas , Anticorpos , Feminino , Citometria de Fluxo , Humanos , Isótopos , Espectrometria de Massas , Análise de Célula Única
20.
STAR Protoc ; 3(2): 101425, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35693208

RESUMO

Trogocytosis is an active transport mechanism by which one cell extracts a plasma membrane fragment with embedded molecules from an adjacent cell in a contact-dependent process leading to the acquisition of a new function. Our protocol, which has general applicability, consolidates and optimizes existing protocols while highlighting key experimental variables to demonstrate that natural killer (NK) cells acquire the tetraspanin CD9 by trogocytosis from ovarian tumor cells. For complete details on the use and execution of this protocol, please refer to Gonzalez et al. (2021).


Assuntos
Neoplasias Ovarianas , Trogocitose , Membrana Celular/metabolismo , Feminino , Humanos , Células Matadoras Naturais/metabolismo , Neoplasias Ovarianas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa