Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Chem Res Toxicol ; 37(7): 1113-1120, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38957009

RESUMO

Electronic cigarettes (ECs) emit many toxic substances, including metals, that can pose a threat to users and the environment. The toxicity of the emitted metals depends on their oxidation states. Hence, this study examines the oxidation states of metals observed in EC aerosols. X-ray photoelectron spectroscopy analysis of the filters that collected EC aerosols identified the oxidation states of five primary metals (based on surface sample analysis), including chromium(III) (close to 100%) under low power setting while a noticeable amount of chromium(VI) (15%) at higher power settings of the EC, and copper(II) (100%), zinc(II) (100%), nickel(II) (100%), lead(II) (65%), and lead(IV) (35%) regardless of power settings. This observation indicates that the increased temperature due to higher power settings could alter the oxidation states of certain metals. We noted that many metals were in their lesser toxic states; however, inhaling these metals may still pose health risks.


Assuntos
Aerossóis , Sistemas Eletrônicos de Liberação de Nicotina , Oxirredução , Aerossóis/química , Metais/química
2.
Nanotechnology ; 35(14)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38086064

RESUMO

Ultraviolet germicidal irradiation (UVGI) and ozone disinfection are crucial methods for mitigating the airborne transmission of pathogenic microorganisms in high-risk settings, particularly with the emergence of respiratory viral pathogens such as SARS-CoV-2 and avian influenza viruses. This study quantitatively investigates the influence of UVGI and ozone on the viability ofE. coliin bioaerosols, with a particular focus on howE. coliviability depends on the size of the bioaerosols, a critical factor that determines deposition patterns within the human respiratory system and the evolution of bioaerosols in indoor environments. This study used a controlled small-scale laboratory chamber whereE. colisuspensions were aerosolized and subjected to varying levels of UVGI and ozone levels throughout the exposure time (2-6 s). The normalized viability ofE. coliwas found to be significantly reduced by UVGI (60-240µW s cm-2) as the exposure time increased from 2 to 6 s, and the most substantial reduction ofE. colinormalized viability was observed when UVGI and ozone (65-131 ppb) were used in combination. We also found that UVGI reduced the normalized viability ofE. coliin bioaerosols more significantly with smaller sizes (0.25-0.5µm) than with larger sizes (0.5-2.5µm). However, when combining UVGI and ozone, the normalized viability was higher for smaller particle sizes than for the larger ones. The findings provide insights into the development of effective UVGI disinfection engineering methods to control the spread of pathogenic microorganisms in high-risk environments. By understanding the influence of the viability of microorganisms in various bioaerosol sizes, we can optimize UVGI and ozone techniques to reduce the potential risk of airborne transmission of pathogens.


Assuntos
Desinfecção , Ozônio , Animais , Humanos , Desinfecção/métodos , Ozônio/farmacologia , Microbiologia do Ar , Raios Ultravioleta
3.
Molecules ; 28(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37110602

RESUMO

Genetically modified plants and crops can contribute to remarkable increase in global food supply, with improved yield and resistance to plant diseases or insect pests. The development of biotechnology introducing exogenous nucleic acids in transgenic plants is important for plant health management. Different genetic engineering methods for DNA delivery, such as biolistic methods, Agrobacterium tumefaciens-mediated transformation, and other physicochemical methods have been developed to improve translocation across the plasma membrane and cell wall in plants. Recently, the peptide-based gene delivery system, mediated by cell-penetrating peptides (CPPs), has been regarded as a promising non-viral tool for efficient and stable gene transfection into both animal and plant cells. CPPs are short peptides with diverse sequences and functionalities, capable of agitating plasma membrane and entering cells. Here, we highlight recent research and ideas on diverse types of CPPs, which have been applied in DNA delivery in plants. Various basic, amphipathic, cyclic, and branched CPPs were designed, and modifications of functional groups were performed to enhance DNA interaction and stabilization in transgenesis. CPPs were able to carry cargoes in either a covalent or noncovalent manner and to internalize CPP/cargo complexes into cells by either direct membrane translocation or endocytosis. Importantly, subcellular targets of CPP-mediated nucleic acid delivery were reviewed. CPPs offer transfection strategies and influence transgene expression at subcellular localizations, such as in plastids, mitochondria, and the nucleus. In summary, the technology of CPP-mediated gene delivery provides a potent and useful tool to genetically modified plants and crops of the future.


Assuntos
Peptídeos Penetradores de Células , Ácidos Nucleicos , Animais , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Peptídeos Penetradores de Células/química , Transfecção , Técnicas de Transferência de Genes , DNA , Ácidos Nucleicos/metabolismo
4.
Chem Res Toxicol ; 35(6): 954-962, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35385266

RESUMO

The usage of electronic cigarettes (ECs) has surged since their invention two decades ago. However, to date, the health effects of EC aerosol exposure are still not well understood because of insufficient data on the chemical composition of EC aerosols and the corresponding evidence of health risks upon exposure. Herein, we quantified the metals in primary and secondhand aerosols generated by three brands of ECs. By combining aerosol filter sampling and inductively coupled plasma mass spectrometry (ICP-MS), we assessed the mass of metals as a function of EC flavoring, nicotine concentration, device power, puff duration, and aging of the devices. The masses of Cr, Cu, Mn, Ni, Cu, and Zn were consistently high across all brands in the primary and secondhand aerosols, some of which were above the regulated maximum daily intake amount, especially for Cr and Ni with mass (nanograms per 10 puffs) emitted at 117 ± 54 and 50 ± 24 (JUUL), 125 ± 77 and 219 ± 203 (VOOPOO), and 33 ± 10 and 27 ± 2 (Vapor4Life). Our analysis indicates that the metals are predominantly released from the EC liquid, potentially through mechanisms such as bubble bursting or the vaporization of metal-organic compounds. High metal contents were also observed in simulated secondhand aerosols, generally 80-90% of those in primary aerosols. Our findings provide a more detailed understanding of the metal emission characteristics of EC for assessing its health effects and policymaking.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Aerossóis/análise , Aromatizantes , Metais , Nicotina/análise
5.
Inhal Toxicol ; 34(7-8): 189-199, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35584059

RESUMO

INTRODUCTION: Secondhand smoke endangers both the environment and the health of nonsmokers. Due to the scarcity of repeatable data generated by human subjects, a system capable of generating representative secondhand smoke is essential for studying smoke properties. This work presents the design and validation of a filter-based system that could mimic the particle deposition and penetration in human respiratory system for secondhand smoke generation and characterization. METHODS: Guided by our study on characterizing size-dependent filtration efficiency of common materials, we identified three filter media that generate similar particle deposition efficiencies compared to different regions of the human respiratory system over a wide submicron size range. We demonstrated the performance of the proposed filter-based system using various operating conditions. Additionally, we compared the properties of secondhand smoke particles to those of primary smoke particles. RESULTS: The difference in aerosol deposition efficiencies between the filter-based system and the International Commission on Radiological Protection (ICRP) model was less than 10% in the size range of 30 to 500 nm. High concentrations of metals were detected in the secondhand smoke. The contents of Ni and Cr generated from the secondhand electronic cigarettes are at least 20 and 5 times above the regulated daily maximum intake amount. CONCLUSION: Given the agreement in aerosol respiratory deposition between the filter-based system and the ICRP model, such a system can facilitate laboratory studies of secondhand smoke due to its simple structure, high repeatability, and ease of control while remaining free of human subjects.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Poluição por Fumaça de Tabaco , Aerossóis/análise , Filtração , Humanos , Tamanho da Partícula , Sistema Respiratório
6.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138333

RESUMO

The application of nanoparticles (NPs) in industry is on the rise, along with the potential for human exposure. While the toxicity of microscale equivalents has been studied, nanoscale materials exhibit different properties and bodily uptake, which limits the prediction ability of microscale models. Here, we examine the cytotoxicity of seven transition metal oxide NPs in the fourth period of the periodic table of the chemical elements. We hypothesized that NP-mediated cytotoxicity is a function of cell killing and suppression of cell proliferation. To test our hypothesis, transition metal oxide NPs were tested in a human lung cancer cell model (A549). Cells were exposed to a series of concentrations of TiO2, Cr2O3, Mn2O3, Fe2O3, NiO, CuO, or ZnO for either 24 or 48 h. All NPs aside from Cr2O3 and Fe2O3 showed a time- and dose-dependent decrease in viability. All NPs significantly inhibited cellular proliferation. The trend of cytotoxicity was in parallel with that of proliferative inhibition. Toxicity was ranked according to severity of cellular responses, revealing a strong correlation between viability, proliferation, and apoptosis. Cell cycle alteration was observed in the most toxic NPs, which may have contributed to promoting apoptosis and suppressing cell division rate. Collectively, our data support the hypothesis that cell killing and cell proliferative inhibition are essential independent variables in NP-mediated cytotoxicity.


Assuntos
Proliferação de Células/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Óxidos/química , Células A549 , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Óxido de Zinco/química
7.
Int J Mol Sci ; 21(7)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231169

RESUMO

The use of nanomaterial-based products continues to grow with advancing technology. Understanding the potential toxicity of nanoparticles (NPs) is important to ensure that products containing them do not impose harmful effects to human or environmental health. In this study, we evaluated the comparative cytotoxicity between nickel oxide (NiO) and nickel hydroxide (Ni(OH)2) in human bronchoalveolar carcinoma (A549) and human hepatocellular carcinoma (HepG2) cell lines. Cellular viability studies revealed cell line-specific cytotoxicity in which nickel NPs were toxic to A549 cells but relatively nontoxic to HepG2 cells. Time-, concentration-, and particle-specific cytotoxicity was observed in A549 cells. NP-induced oxidative stress triggered dissipation of mitochondrial membrane potential and induction of caspase-3 enzyme activity. The subsequent apoptotic events led to reduction in cell number. In addition to cell death, suppression of cell proliferation played an essential role in regulating cell number. Collectively, the observed cell viability is a function of cell death and suppression of proliferation. Physical and chemical properties of NPs such as total surface area and metal dissolution are in agreement with the observed differential cytotoxicity. Understanding the properties of NPs is essential in informing the design of safer materials.


Assuntos
Morte Celular/efeitos dos fármacos , Hidróxidos/toxicidade , Nanopartículas/toxicidade , Níquel/toxicidade , Células A549 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Estresse Oxidativo/efeitos dos fármacos
8.
J Nanosci Nanotechnol ; 19(2): 613-621, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30360131

RESUMO

Cell-penetrating peptides (CPPs) containing a preponderance of basic amino acids are able to deliver biologically active macromolecules and nanomaterials into live cells. Quantum dots (QDs) are nanoparticles with unique fluorescence properties that have found wide application in biomedical imaging. In this study, we demonstrate transduction of an L6 CPP (RRWQWR) derived from bovine lactoferricin (LFcin) into human lung cancer cells. L6 noncovalently interacts with QDs to form stable complexes. L6/QD complexes enter cells most efficiently when prepared at a nitrogen/phosphate ratio of 60. Mechanistic studies indicate that L6/QD complexes enter cells by endocytosis. Treatment with 1,2-benzisothiazol-3(2H)-one (BIT), an industrial preservative that enhances uptake of certain CPPs, does not affect L6 CPP-mediated protein transduction efficiency. L6 and L6/QD complexes are not cytotoxic. These results indicate that L6 LFcin might be an efficient and safe nanoshuttle for nanoparticles or nanomedicines in biomedical applications.


Assuntos
Peptídeos Penetradores de Células , Nanopartículas , Pontos Quânticos , Animais , Bovinos , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/farmacologia , Endocitose , Humanos , Lactoferrina , Nanopartículas/toxicidade
9.
Nanotechnology ; 28(4): 045601, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27977417

RESUMO

Ineffective drug release at the target site is among the top challenges for cancer treatment. This reflects the facts that interaction with the physiological condition can denature active ingredients of drugs, and low delivery to the disease microenvironment leads to poor therapeutic outcomes. We hypothesize that depositing a thin layer of bioresponsive polymer on the surface of drug nanoparticles would not only protect drugs from degradation but also allow the release of drugs at the target site. Here, we report a one-step process to prepare bioresponsive polymer coated drug nanorods (NRs) from liquid precursors using the solvent diffusion method. A thin layer (10.3 ± 1.4 nm) of poly(ε-caprolactone) (PCL) polymer coating was deposited on the surface of camptothecin (CPT) anti-cancer drug NRs. The mean size of PCL-coated CPT NRs was 500.9 ± 91.3 nm length × 122.7 ± 10.1 nm width. The PCL polymer coating was biodegradable at acidic pH 6 as determined by Fourier transform infrared spectroscopy. CPT drugs were released up to 51.5% when PCL coating dissolved into non-toxic carboxyl and hydroxyl groups. Trastuzumab (TTZ), a humanized IgG monoclonal antibody, was conjugated to the NR surface for breast cancer cell targeting. Combination treatments using CPT and TTZ decreased the HER-2 positive BT-474 breast cancer cell growth by 66.9 ± 5.3% in vitro. These results suggest effective combination treatments of breast cancer cells using bioresponsive polymer coated drug delivery.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Materiais Revestidos Biocompatíveis/química , Nanotubos/química , Polímeros/química , Camptotecina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Liberação Controlada de Fármacos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Nanotubos/ultraestrutura , Poliésteres/química , Espectroscopia de Infravermelho com Transformada de Fourier , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico
10.
Int J Mol Sci ; 18(12)2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29236059

RESUMO

Nanotechnology is an emerging discipline that studies matters at the nanoscale level. Eventually, the goal is to manipulate matters at the atomic level to serve mankind. One growing area in nanotechnology is biomedical applications, which involve disease management and the discovery of basic biological principles. In this review, we discuss characteristics of nanomaterials, with an emphasis on transition metal oxide nanoparticles that influence cytotoxicity. Identification of those properties may lead to the design of more efficient and safer nanosized products for various industrial purposes and provide guidance for assessment of human and environmental health risk. We then investigate biochemical and molecular mechanisms of cytotoxicity that include oxidative stress-induced cellular events and alteration of the pathways pertaining to intracellular calcium homeostasis. All the stresses lead to cell injuries and death. Furthermore, as exposure to nanoparticles results in deregulation of the cell cycle (i.e., interfering with cell proliferation), the change in cell number is a function of cell killing and the suppression of cell proliferation. Collectively, the review article provides insights into the complexity of nanotoxicology.


Assuntos
Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Cálcio/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo
11.
J Membr Biol ; 248(2): 355-68, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25655108

RESUMO

Bacterial and archaeal cell envelopes are complex multilayered barriers that serve to protect these microorganisms from their extremely harsh and often hostile environments. Import of exogenous proteins and nanoparticles into cells is important for biotechnological applications in prokaryotes. In this report, we demonstrate that cell-penetrating peptides (CPPs), both bacteria-expressed nona-arginine peptide (R9) and synthetic R9 (SR9), are able to deliver noncovalently associated proteins or quantum dots into four representative species of prokaryotes: cyanobacteria (Synechocystis sp. PCC 6803), bacteria (Escherichia coli DH5α and Arthrobacter ilicis D-50), and archaea (Thermus aquaticus). Although energy-dependent endocytosis is generally accepted as a hallmark that distinguishes eukaryotes from prokaryotes, cellular uptake of uncomplexed green fluorescent protein (GFP) by cyanobacteria was mediated by classical endocytosis. Mechanistic studies revealed that macropinocytosis plays a critical and major role in CPP-mediated protein transduction in all four prokaryotes. Membrane damage was not observed when cyanobacterial cells were treated with R9/GFP complexes, nor was cytotoxicity detected when bacteria or archaea were treated with SR9/QD complexes in the presence of macropinocytic inhibitors. These results indicate that the uptake of protein is not due to a compromise of membrane integrity in cyanobacteria, and that CPP can be an effective and safe carrier for membrane trafficking in prokaryotic cells. Our investigation provides important new insights into the transport of exogenous proteins and nanoparticles across the complex membrane systems of prokaryotes.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Endocitose , Células Procarióticas/fisiologia , Archaea/metabolismo , Bactérias/metabolismo , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/toxicidade , Microscopia de Fluorescência , Permeabilidade , Transporte Proteico
12.
J Nanosci Nanotechnol ; 15(3): 2067-78, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26413622

RESUMO

Nanoparticles, such as semiconductor quantum dots (QDs), have been found increasing use in biomedical diagnosis and therapeutics because of their unique properties, including quantum confinement, surface plasmon resonance, and superparamagnetism. Cell-penetrating peptides (CPPs) represent an efficient mechanism to overcome plasma membrane barriers and deliver biologically active molecules into cells. In this study, we demonstrate that three arginine-rich CPPs (SR9, HR9, and PR9) can noncovalently complex with red light emitting QDs, dramatically increasing their deliv- ery into living cells. Zeta-potential and size analyses highlight the importance of electrostatic interactions between positive-charged CPP/QD complexes and negative-charged plasma membranes indicating the efficiency of transmembrane complex transport. Subcellular colocalization indicates associations of QD with early endosomes and lysosomes following PR9-mediated delivery. Our study demonstrates that nontoxic CPPs of varied composition provide an effective vehicle for the design of optimized drug delivery systems.


Assuntos
Arginina , Peptídeos Penetradores de Células/química , Pontos Quânticos/química , Pontos Quânticos/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Cor , Humanos , Espaço Intracelular/metabolismo
13.
BMC Microbiol ; 13: 57, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23497160

RESUMO

BACKGROUND: The plasma membrane plays an essential role in selective permeability, compartmentalization, osmotic balance, and cellular uptake. The characteristics and functions of cyanobacterial membranes have been extensively investigated in recent years. Cell-penetrating peptides (CPPs) are special nanocarriers that can overcome the plasma membrane barrier and enter cells directly, either alone or with associated cargoes. However, the cellular entry mechanisms of CPPs in cyanobacteria have not been studied. RESULTS: In the present study, we determine CPP-mediated transduction efficiency and internalization mechanisms in cyanobacteria using a combination of biological and biophysical methods. We demonstrate that both Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 strains of cyanobacteria possess red autofluorescence. Green fluorescent protein (GFP), either alone or noncovalently associated with a CPP comprised of nine arginine residues (R9/GFP complexes), entered cyanobacteria. The ATP-depleting inhibitor of classical endocytosis, N-ethylmaleimide (NEM), could block the spontaneous internalization of GFP, but not the transduction of R9/GFP complexes. Three specific inhibitors of macropinocytosis, cytochalasin D (CytD), 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), and wortmannin, reduced the efficiency of R9/GFP complex transduction, indicating that entry of R9/GFP complexes involves macropinocytosis. Both the 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) and membrane leakage analyses confirmed that R9/GFP complexes were not toxic to the cyanobacteria, nor were the endocytic and macropinocytic inhibitors used in these studies. CONCLUSIONS: In summary, we have demonstrated that cyanobacteria use classical endocytosis and macropinocytosis to internalize exogenous GFP and CPP/GFP proteins, respectively. Moreover, the CPP-mediated delivery system is not toxic to cyanobacteria, and can be used to investigate biological processes at the cellular level in this species. These results suggest that both endocytic and macropinocytic pathways can be used for efficient internalization of regular protein and CPP-mediated protein delivery in cyanobacteria, respectively.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Synechococcus/metabolismo , Synechocystis/metabolismo , Endocitose , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Synechococcus/fisiologia , Synechocystis/fisiologia
14.
J Biomed Sci ; 20: 11, 2013 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-23432810

RESUMO

BACKGROUND: Honokiol, a cell-permeable phenolic compound derived from the bark of magnolia trees and present in Asian herbal teas, has a unique array of pharmacological actions, including the inhibition of multiple autonomic responses. We determined the effects of honokiol on calcium signaling underlying transmission mediated by human M3 muscarinic receptors expressed in Chinese hamster ovary (CHO) cells. Receptor binding was determined in radiolabelled ligand binding assays; changes in intracellular calcium concentrations were determined using a fura-2 ratiometric imaging protocol; cytotoxicity was determined using a dye reduction assay. RESULTS: Honokiol had a potent (EC50 ≈ 5 µmol/l) inhibitory effect on store operated calcium entry (SOCE) that was induced by activation of the M3 receptors. This effect was specific, rapid and partially reversible, and was seen at concentrations not associated with cytotoxicity, inhibition of IP3 receptor-mediated calcium release, depletion of ER calcium stores, or disruption of M3 receptor binding. CONCLUSIONS: It is likely that an inhibition of SOCE contributes to honokiol disruption of parasympathetic motor functions, as well as many of its beneficial pharmacological properties.


Assuntos
Compostos de Bifenilo/administração & dosagem , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Lignanas/administração & dosagem , Receptor Muscarínico M3/metabolismo , Animais , Células CHO , Cricetinae , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Transporte de Íons/efeitos dos fármacos
15.
J Biomed Sci ; 20: 48, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23844974

RESUMO

BACKGROUND: Oxidative stress increases the cytosolic content of calcium in the cytoplasm through a combination of effects on calcium pumps, exchangers, channels and binding proteins. In this study, oxidative stress was produced by exposure to tert-butyl hydroperoxide (tBHP); cell viability was assessed using a dye reduction assay; receptor binding was characterized using [3H]N-methylscopolamine ([3H]MS); and cytosolic and luminal endoplasmic reticulum (ER) calcium concentrations ([Ca2+]i and [Ca2+]L, respectively) were measured by fluorescent imaging. RESULTS: Activation of M3 muscarinic receptors induced a biphasic increase in [Ca2+]i: an initial, inositol trisphosphate (IP3)-mediated release of Ca2+ from endoplasmic reticulum (ER) stores followed by a sustained phase of Ca2+ entry (i.e., store-operated calcium entry; SOCE). Under non-cytotoxic conditions, tBHP increased resting [Ca2+]i; a 90 minute exposure to tBHP (0.5-10 mM ) increased [Ca2+]i from 26 to up to 127 nM and decreased [Ca2+]L by 55%. The initial response to 10 µM carbamylcholine was depressed by tBHP in the absence, but not the presence, of extracellular calcium. SOCE, however, was depressed in both the presence and absence of extracellular calcium. Acute exposure to tBHP did not block calcium influx through open SOCE channels. Activation of SOCE following thapsigargin-induced depletion of ER calcium was depressed by tBHP exposure. In calcium-free media, tBHP depressed both SOCE and the extent of thapsigargin-induced release of Ca2+ from the ER. M3 receptor binding parameters (ligand affinity, guanine nucleotide sensitivity, allosteric modulation) were not affected by exposure to tBHP. CONCLUSIONS: Oxidative stress induced by tBHP affected several aspects of M3 receptor signaling pathway in CHO cells, including resting [Ca2+]i, [Ca2+]L, IP3 receptor mediated release of calcium from the ER, and calcium entry through the SOCE. tBHP had little effect on M3 receptor binding or G protein coupling. Thus, oxidative stress affects multiple aspects of calcium homeostasis and calcium dependent signaling.


Assuntos
Sinalização do Cálcio/genética , Retículo Endoplasmático/metabolismo , Transporte de Íons/genética , Estresse Oxidativo/efeitos dos fármacos , Animais , Células CHO , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Sobrevivência Celular/genética , Cricetinae , Cricetulus , Citoplasma/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Transdução de Sinais/genética , terc-Butil Hidroperóxido/toxicidade
16.
Int J Bioprint ; 9(6)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38516674

RESUMO

Recent advances in additive manufacturing have led to the development of innovative solutions for tissue regeneration. Hydrogel materials have gained significant attention for burn wound treatment in clinical practice among various advanced dressings due to their soothing and moisturizing activity. However, prolonged healing, pain, and traumatic removal due to the lack of long-term wound hydration are some of the challenges in the treatment of second-degree burn wounds. In this study, 3D-printed dressings were fabricated using gelatin, alginate, and bioactive borate glass (BBG) using an extrusion-based bioprinter. After ionic crosslinking, the 3D-printed dressings were characterized for mechanical properties, degradation rate, hydration activity, and in vitro cell viability using human fibroblasts. The results demonstrated that in 3D-printed dressings with 20 wt% BBG, Young's modulus increased by 105%, and 10-day degradation rate decreased by 62%. Addition of BBG prevented the burst release of water from hydrogel dressings and enabled the continuous water release for up to 10 days, which is crucial in treating second-degree burn wounds. 3D-printed hydrogel dressings with BBG showed long-term cell viability that can be a result of the accumulative release of therapeutic ions from BBG particulate. The in vivo wound healing functionality of the dressings was investigated using a rat model with a second-degree burn wound. Our animal study showed that the 3D-printed dressings with BBG exhibited faster wound closure, non-adhesive contact, non-invasive debridement, and non-traumatic dressing removal. Histological analysis suggested that 3D-printed dressings contributed to more uniform re-epithelialization and tissue remodeling compared to the non-printed hydrogels of the same compositions. Critically, 3D-printed dressings with BBG led to significant regeneration of hair follicles compared to the 3D-printed hydrogel, non-printed hydrogel, and the control groups. The superior outcome of the 3D-printed hydrogel-BBG20 dressings can be attributed to the bioactive formulation, which promotes moist wound healing for longer time periods, and the non-adhesive porous texture of the 3D-printed dressings with increased wound-dressing interactions. Our findings provided proof of concept for the synergistic effect of bioactive formulation and the porous texture of the 3D-printed hydrogel dressings incorporated with BBG on continuous water release and, consequently, on second-degree burn wound healing.

17.
Membranes (Basel) ; 12(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35054614

RESUMO

Recently, membrane-active peptides or proteins that include antimicrobial peptides (AMPs), cytolytic proteins, and cell-penetrating peptides (CPPs) have attracted attention due to their potential applications in the biomedical field. Among them, CPPs have been regarded as a potent drug/molecules delivery system. Various cargoes, such as DNAs, RNAs, bioactive proteins/peptides, nanoparticles and drugs, can be carried by CPPs and delivered into cells in either covalent or noncovalent manners. Here, we focused on four arginine-rich CPPs and reviewed the mechanisms that these CPPs used for intracellular uptake across cellular plasma membranes. The varying transduction efficiencies of them alone or with cargoes were discussed, and the membrane permeability was also expounded for CPP/cargoes delivery in various species. Direct membrane translocation (penetration) and endocytosis are two principal mechanisms for arginine-rich CPPs mediated cargo delivery. Furthermore, the amino acid sequence is the primary key factor that determines the cellular internalization mechanism. Importantly, the non-cytotoxic nature and the wide applicability make CPPs a trending tool for cellular delivery.

18.
Nanomaterials (Basel) ; 12(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36364491

RESUMO

Metal and metal oxide nanoparticles, including copper nanoparticles (CuNPs), display antimicrobial activities and are regarded as promising microorganism inhibitors. Here, we explored the antimicrobial activity of CuNPs in Escherichia coli (E. coli) using two particle sizes (20 and 60 nm) and five concentrations (1, 5, 10, 50 and 100 µg/mL). The result showed a concentration-dependent trend of bactericidal activities for both size groups, with 20 nm particles more effective than 60 nm particles at low concentrations. The membrane disruption caused by CuNPs was confirmed by electron microscopy, PI staining and protein leaking analysis. However, the results of reactive oxygen species generation and genomic DNA damage revealed that the size and concentration of CuNPs were factors affecting the induction of multiple bactericidal mechanisms simultaneously on different scales. Further results of annexin V-PI staining supported this hypothesis by showing the shifting composition of the early-, late- and non-apoptotic dead cells across the CuNP groups. Many CuNP treatment groups were rescued when four mammalian modulators-wortmannin, necrosulfonamide, Z-VAD-FMK, and SBI-0206965-were applied separately. The results suggest the possible existence of bacterial programmed cell death pathways in E. coli which could be triggered by CuNP treatments.

19.
Chemosphere ; 263: 127958, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32835977

RESUMO

Nanoparticles (NPs) can significantly influence toxicity imposed by toxic metals. However, this impact has not been quantified. In this research, we investigated the effect of nano-TiO2 on lead (Pb) accumulation and the resultant toxicity using water flea Ceriodaphnia dubia (C. dubia) as the testing organism. We used a two-compartment modeling approach, which included a two-compartment accumulation model and a toxicodynamic model, on the basis of Pb body tissue accumulation, to quantify the impact of nano-TiO2 on Pb toxicity. The effect of algae on the combined toxicity of Pb and nano-TiO2 was also quantified. The two-compartment accumulation model could well quantify Pb accumulation kinetics in two-compartments of C. dubia, the gut and the rest of the body tissue in the presence of nano-TiO2. Modeling results suggested that the gut quickly accumulates Pb through active uptake from the mouth, but the rest of the body tissue slowly accumulates Pb from the gut. The predicted Pb distribution within C. dubia was verified by depuration modeling results from an independent depuration test. The survivorship of C. dubia as a function of Pb accumulated in the body tissue and exposure time can be well described using a toxicodynamic model. The effects of algae on Pb accumulation in different compartments of C. dubia and the toxicity in the presence of nano-TiO2 were also well described using the two-compartment modeling approach. Therefore, the novel two-compartment modeling approach provides a useful tool for assessing the effect of NPs on aquatic ecosystems where toxic metals are present.


Assuntos
Cladocera/fisiologia , Chumbo/toxicidade , Titânio/química , Poluentes Químicos da Água/toxicidade , Animais , Cladocera/efeitos dos fármacos , Ecossistema , Nanopartículas/toxicidade
20.
Curr Pharm Des ; 27(6): 816-825, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33076803

RESUMO

BACKGROUND/PURPOSE: Type 2 diabetes (T2D) is characterized by hyperglycemia resulting from the body's inability to produce and/or use insulin. Patients with T2D often have hyperinsulinemia, dyslipidemia, inflammation, and oxidative stress, which then lead to hypertension, chronic kidney disease, cardiovascular disease, and increased risk of morbidity and mortality (9th leading cause globally). Insulin and related pharmacological therapies are widely used to manage T2D, despite their limitations. Efficient drug delivery systems (DDS) that control drug kinetics may decrease side effects, allow for efficient targeting, and increase the bioavailability of drugs to achieve maximum therapeutic benefits. Thus, the development of effective DDS is crucial to beat diabetes. METHODS: Here, we introduced a highly bioavailable vector, cell-penetrating peptides (CPPs), as a powerful DDS to overcome limitations of free drug administration. RESULTS: CPPs are short peptides that serve as a potent tool for delivering therapeutic agents across cell membranes. Various cargoes, including proteins, DNA, RNA, liposomes, therapeutic molecules, and nanomaterials, generally retain their bioactivity upon entering cells. The mechanisms of CPPs/cargoes intracellular entry are classified into two parts: endocytic pathways and direct membrane translocation. In this article, we focus on the applications of CPPs/therapeutic agents in the treatment of diabetes. Hypoglycemic drugs with CPPs intervention can enhance therapeutic effectiveness, and CPP-mediated drug delivery can facilitate the actions of insulin. Numerous studies indicate that CPPs can effectively deliver insulin, produce synergistic effects with immunosuppressants for successful pancreatic islet xenotransplantation, prolong pharmacokinetics, and retard diabetic nephropathy. CONCLUSION: We suggest that CPPs can be a new generation of drug delivery systems for effective treatment and management of diabetes and diabetes-associated complications.


Assuntos
Peptídeos Penetradores de Células , Diabetes Mellitus Tipo 2 , Membrana Celular , Sistemas de Liberação de Medicamentos , Humanos , Lipossomos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa