Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 189: 105280, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36549810

RESUMO

Tolfenpyrad is a broad spectrum of insecticide that can effectively kill different types of pests, including Lepidoptera. However, due to improper use, the adverse effects of tolfenpyrad on beneficial or economic insects have not been well studied. In this study, we systematically investigated the toxic effect of sublethal tolfenpyrad on silkworms. Sublethal tolfenpyrad exposure can affect the body weight, developments days, cocooning rate, eclosion rate and pupation rate. To further study the response mechanism of silkworms to tolfenpyrad stimulation, we compared the different expression genes by transcriptome sequencing and verified them by qRT-PCR. We found that significant changes in the genes expression was involved in xenobiotics biodegradation and metabolism, immune system and digestive system after tolfenpyrad treatment. To further investigate the possible mechanisms by which intestinal microbia in the response to tolfenpyrad, we analysed the microbia changes in the midgut of silkworms by 16S rRNA gene sequencing. The results showed that the relative abundances of Enterobacter and Staphylococcus were increased whereas the Tyzzerella and Methylobacterium-Methylorubrum were decreased after tolfenpyrad stimulation. Taken together, these results indicated that low concentration of tolfenpyrad affect the growth and development of silkworms. Silkworms respond to the toxicity of tolfenpyrad by inducing immune and detoxification-related gene expression or altering microbial composition in the midgut.


Assuntos
Bombyx , Inseticidas , Animais , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Inseticidas/farmacologia , Intestinos
2.
Dev Comp Immunol ; 148: 104899, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37531974

RESUMO

Chordotonal organs are miniature sensory organs present in insects. Chordotonal organs depend on transient receptor potential (TRP) channels. Transient receptor potential vanilloid (TRPV) channels are the only TRPs identified that can act as targets of insecticides. By binding with TRPV channels, insecticides targeting the chordotonal organs trigger the inflow of calcium ions, resulting in abnormal function of the chordotonal organ to achieve the goal of eliminating pests. TRPV channels are highly expressed in various developmental stages and tissue parts of insects and play an important role in the whole life history of insects. In this review, we will discuss the structure and types of TRPV channels as well as their genetic relationships in different species. We also systematically reviewed the recent progress of TRPV channels as insecticide targets, demonstrating that TRPV channels can be used as the target of new high-efficiency insecticides.


Assuntos
Inseticidas , Canais de Potencial de Receptor Transitório , Animais , Canais de Potencial de Receptor Transitório/genética , Insetos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa