Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6278, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805509

RESUMO

An ultimate goal of electron paramagnetic resonance (EPR) spectroscopy is to analyze molecular dynamics in place where it occurs, such as in a living cell. The nanodiamond (ND) hosting nitrogen-vacancy (NV) centers will be a promising EPR sensor to achieve this goal. However, ND-based EPR spectroscopy remains elusive, due to the challenge of controlling NV centers without well-defined orientations inside a flexible ND. Here, we show a generalized zero-field EPR technique with spectra robust to the sensor's orientation. The key is applying an amplitude modulation on the control field, which generates a series of equidistant Floquet states with energy splitting being the orientation-independent modulation frequency. We acquire the zero-field EPR spectrum of vanadyl ions in aqueous glycerol solution with embedded single NDs, paving the way towards in vivo EPR.

2.
Sci Adv ; 8(32): eabq8158, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35947671

RESUMO

Developing robust microwave-field sensors is both fundamentally and practically important with a wide range of applications from astronomy to communication engineering. The nitrogen vacancy (NV) center in diamond is an attractive candidate for such purpose because of its magnetometric sensitivity, stability, and compatibility with ambient conditions. However, the existing NV center-based magnetometers have limited sensitivity in the microwave band. Here, we present a continuous heterodyne detection scheme that can enhance the sensor's response to weak microwaves, even in the absence of spin controls. Experimentally, we achieve a sensitivity of 8.9 pT Hz-1/2 for microwaves of 2.9 GHz by simultaneously using an ensemble of nNV ~ 2.8 × 1013 NV centers within a sensor volume of 4 × 10-2 mm3. Besides, we also achieve 1/t scaling of frequency resolution up to measurement time t of 10,000 s. Our scheme removes control pulses and thus will greatly benefit practical applications of diamond-based microwave sensors.

3.
Sci Adv ; 6(22): eaaz8244, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32766444

RESUMO

Electron paramagnetic resonance (EPR) spectroscopy is among the most important analytical tools in physics, chemistry, and biology. The emergence of nitrogen-vacancy (NV) centers in diamond, serving as an atomic-sized magnetometer, has promoted this technique to single-spin level, even under ambient conditions. Despite the enormous progress in spatial resolution, the current megahertz spectral resolution is still insufficient to resolve key heterogeneous molecular information. A major challenge is the short coherence times of the sample electron spins. Here, we address this challenge by using a magnetic noise-insensitive transition between states of different symmetry. We demonstrate a 27-fold narrower spectrum of single substitutional nitrogen (P1) centers in diamond with a linewidth of several kilohertz, and then some weak couplings can be resolved. Those results show both spatial and spectral advances of NV center-based EPR and provide a route toward analytical (EPR) spectroscopy at the single-molecule level.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa