Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Pharmacol Rev ; 75(3): 532-553, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36627210

RESUMO

The development of cutting-edge techniques to study specific brain regions and neural circuits that regulate sleep-wake brain states and general anesthesia (GA), has increased our understanding of these states that exhibit similar neurophysiologic traits. This review summarizes current knowledge focusing on cell subtypes and neural circuits that control wakefulness, rapid eye movement (REM) sleep, non-REM sleep, and GA. We also review novel insights into their interactions and raise unresolved questions and challenges in this field. Comparisons of the overlapping neural substrates of sleep-wake and GA regulation will help us to understand sleep-wake transitions and how anesthetics cause reversible loss of consciousness. SIGNIFICANCE STATEMENT: General anesthesia (GA), sharing numerous neurophysiologic traits with the process of natural sleep, is administered to millions of surgical patients annually. In the past decade, studies exploring the neural mechanisms underlying sleep-wake and GA have advanced our understanding of their interactions and how anesthetics cause reversible loss of consciousness. Pharmacotherapies targeting the neural substrates associated with sleep-wake and GA regulations have significance for clinical practice in GA and sleep medicine.


Assuntos
Sono REM , Sono , Humanos , Sono REM/fisiologia , Anestesia Geral/efeitos adversos , Encéfalo/fisiologia , Inconsciência
2.
Anesthesiology ; 140(1): 102-115, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812765

RESUMO

BACKGROUND: Multiple neural structures involved in maintaining wakefulness have been found to promote arousal from general anesthesia. The medial septum is a critical region that modulates arousal behavior. This study hypothesized that glutamatergic neurons in the medial septum play a crucial role in regulating states of consciousness during sevoflurane general anesthesia. METHODS: Adult male mice were used in this study. The effects of sevoflurane anesthesia on neuronal activity were determined by fiber photometry. Lesions and chemogenetic manipulations were used to study the effects of the altered activity of medial septal glutamatergic neurons on anesthesia induction, emergence, and sensitivity to sevoflurane. Optogenetic stimulation was used to observe the role of acute activation of medial septal glutamatergic neurons on cortical activity and behavioral changes during sevoflurane-induced continuous steady state of general anesthesia and burst suppression state. RESULTS: The authors found that medial septal glutamatergic neuronal activity decreased during sevoflurane anesthesia induction and recovered in the early period of emergence. Chemogenetic activation of medial septal glutamatergic neurons prolonged the induction time (mean ± SD, hM3Dq-clozapine N-oxide vs. hM3Dq-saline, 297.5 ± 60.1 s vs. 229.4 ± 29.9 s, P < 0.001, n = 11) and decreased the emergence time (53.2 ± 11.8 s vs. 77.5 ± 33.5 s, P = 0.025, n = 11). Lesions or chemogenetic inhibition of these neurons produced the opposite effects. During steady state of general anesthesia and deep anesthesia-induced burst suppression state, acute optogenetic activation of medial septal glutamatergic neurons induced cortical activation and behavioral emergence. CONCLUSIONS: The study findings reveal that activation of medial septal glutamatergic neurons has arousal-promoting effects during sevoflurane anesthesia in male mice. The activation of these neurons prolongs the induction and accelerates the emergence of anesthesia.


Assuntos
Estado de Consciência , Neurônios , Camundongos , Animais , Masculino , Sevoflurano/farmacologia , Vigília/fisiologia , Anestesia Geral
3.
Acta Pharmacol Sin ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671193

RESUMO

Despite the widespread prevalence and important medical impact of insomnia, effective agents with few side effects are lacking in clinics. This is most likely due to relatively poor understanding of the etiology and pathophysiology of insomnia, and the lack of appropriate animal models for screening new compounds. As the main homeostatic, circadian, and neurochemical modulations of sleep remain essentially similar between humans and rodents, rodent models are often used to elucidate the mechanisms of insomnia and to develop novel therapeutic targets. In this article, we focus on several rodent models of insomnia induced by stress, diseases, drugs, disruption of the circadian clock, and other means such as genetic manipulation of specific neuronal activity, respectively, which could be used to screen for novel hypnotics. Moreover, important advantages and constraints of some animal models are discussed. Finally, this review highlights that the rodent models of insomnia may play a crucial role in novel drug development to optimize the management of insomnia.

4.
J Neurochem ; 166(2): 233-247, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37353897

RESUMO

The cholinergic neurons in the nucleus basalis of Meynert (NBM) are a key structure in cognition, the dysfunction of which is associated with various neurological disorders, especially dementias. However, the whole-brain neural connectivity to cholinergic neurons in the NBM remains to be further and comprehensively researched. Using virus-based, specific, retrograde, and anterograde tracing, we illustrated the monosynaptic inputs and axon projections of NBM cholinergic neurons in choline acetyltransferase (ChAT)-Cre transgenic mice. Our results showed that NBM cholinergic neurons received mainly inputs from the caudate putamen and the posterior limb of the anterior commissure in the subcortex. Moreover, the majority of cholinergic terminals from the NBM were observed in the cortex mantle, including the motor cortex, sensory cortex, and visual cortex. Interestingly, although NBM cholinergic neurons received input projections from the caudate putamen, interstitial nucleus of the posterior limb of the anterior commissure, and central amygdaloid nucleus, NBM cholinergic neurons sparsely sent axon projection to innervate these areas. Furthermore, primary motor cortex, secondary motor cortex, and primary somatosensory cortex received abundant inputs from the NBM but sent few outputs to the NBM. Taken together, our results reveal the detailed and specific connectivity of cholinergic neurons of the NBM and provide a neuroanatomic foundation for further studies to explore the important physiological functions of NBM cholinergic neurons.


Assuntos
Núcleo Basal de Meynert , Substância Branca , Camundongos , Animais , Neurônios Colinérgicos , Córtex Cerebral , Axônios , Camundongos Transgênicos
5.
Eur J Neurosci ; 58(3): 2807-2823, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37452644

RESUMO

The bed nucleus of the stria terminalis (BNST) is a neuropeptide-enriched brain region that modulates a wide variety of emotional behaviours and states, including stress, anxiety, reward and social interaction. The BNST consists of diverse subregions and neuronal ensembles; however, because of the high molecular heterogeneity within BNST neurons, the mechanisms through which the BNST regulates distinct emotional behaviours remain largely unclear. Prior studies have identified BNST calretinin (CR)-expressing neurons, which lack neuropeptides. Here, employing virus-based cell-type-specific retrograde and anterograde tracing systems, we mapped the whole-brain monosynaptic inputs and axonal projections of BNST CR-expressing neurons in male mice. We found that BNST CR-expressing neurons received inputs mainly from the amygdalopiriform transition area, central amygdala and hippocampus and moderately from the medial preoptic area, basolateral amygdala, paraventricular thalamus and lateral hypothalamus. Within the BNST, plenty of input neurons were primarily located in the oval and interfascicular subregions. Furthermore, numerous BNST CR-expressing neuronal boutons were observed within the BNST but not in other brain regions, thus suggesting that these neurons are a type of interneuron. These results will help further elucidate the neuronal circuits underlying the elaborate and distinct functions of the BNST.


Assuntos
Neuropeptídeos , Núcleos Septais , Camundongos , Masculino , Animais , Núcleos Septais/metabolismo , Calbindina 2 , Encéfalo/metabolismo , Neuropeptídeos/metabolismo , Interneurônios/metabolismo
6.
Br J Anaesth ; 130(6): 698-708, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36828739

RESUMO

BACKGROUND: The neuronal mechanisms underlying propofol-induced modulation of consciousness are poorly understood. Neuroimaging studies suggest a potential role for non-specific thalamic nuclei in propofol-induced loss of consciousness. We investigated the contribution of the paraventricular thalamus (PVT), a midline thalamic nucleus that has been implicated in arousal control and general anaesthesia with inhaled anaesthetics, to loss and recovery of consciousness during propofol anaesthesia. METHODS: Polysomnographic recordings and righting reflex test were used to determine the transitions of loss and recovery of righting reflex, used as a measure of consciousness in mice, during propofol anaesthesia in mice under conditions mimicking clinical propofol administration. PVT neuronal activities were monitored using fibre photometry and regulated using optogenetic and chemogenetic methods. RESULTS: Population activities of PVT glutamatergic neurones began to decrease before propofol-induced loss of consciousness and rapidly increased to a peak at the onset of recovery of consciousness. Chemogenetic inhibition of PVT calretinin-expressing (PVTCR) neurones shortened onset (from 176 [35] to 127 [26] s; P=0.001) and prolonged return (from 1568 [611] to 3126 [1616] s; P=0.002) of righting reflex. Conversely, chemogenetic activation of PVTCR neurones exerted opposite effects. Furthermore, optogenetic silencing of PVTCR neurones accelerated transitions to loss of consciousness (from 205 [35] to 158 [44] s; P=0.027) and slowed transitions to recovery of consciousness (from 230 [78] to 370 [99] s; P=0.041). During a steady period of unconsciousness maintained with continuous propofol infusion, brief optical activation of PVTCR neurones restored cortical activity and arousal with a latency of about 5 s. CONCLUSIONS: The paraventricular thalamus contributes to the control of consciousness transitions in propofol anaesthesia in mice. This provides a potential neuroanatomical target for controlling consciousness to reduce anaesthetic dose requirements and side effects.


Assuntos
Propofol , Camundongos , Animais , Propofol/efeitos adversos , Estado de Consciência , Anestésicos Intravenosos/efeitos adversos , Tálamo , Inconsciência/induzido quimicamente , Anestesia Geral/métodos
7.
Mol Psychiatry ; 26(7): 2912-2928, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33057171

RESUMO

The ventral pallidum (VP) regulates motivation, drug addiction, and several behaviors that rely on heightened arousal. However, the role and underlying neural circuits of the VP in the control of wakefulness remain poorly understood. In the present study, we sought to elucidate the specific role of VP GABAergic neurons in controlling sleep-wake behaviors in mice. Fiber photometry revealed that the population activity of VP GABAergic neurons was increased during physiological transitions from non-rapid eye movement (non-REM, NREM) sleep to either wakefulness or REM sleep. Moreover, chemogenetic and optogenetic manipulations were leveraged to investigate a potential causal role of VP GABAergic neurons in initiating and/or maintaining arousal. In vivo optogenetic stimulation of VP GABAergic neurons innervating the ventral tegmental area (VTA) strongly promoted arousal via disinhibition of VTA dopaminergic neurons. Functional in vitro mapping revealed that VP GABAergic neurons, in principle, inhibited VTA GABAergic neurons but also inhibited VTA dopaminergic neurons. In addition, optogenetic stimulation of terminals of VP GABAergic neurons revealed that they promoted arousal by innervating the lateral hypothalamus, but not the mediodorsal thalamus or lateral habenula. The increased wakefulness chemogenetically evoked by VP GABAergic neuronal activation was completely abolished by pretreatment with dopaminergic D1 and D2/D3 receptor antagonists. Furthermore, activation of VP GABAergic neurons increased exploration time in both the open-field and light-dark box tests but did not modulate depression-like behaviors or food intake. Finally, chemogenetic inhibition of VP GABAergic neurons decreased arousal. Taken together, our findings indicate that VP GABAergic neurons are essential for arousal related to motivation.


Assuntos
Prosencéfalo Basal , Vigília , Animais , Neurônios GABAérgicos , Camundongos , Motivação , Área Tegmentar Ventral
8.
J Sleep Res ; 31(2): e13484, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34510626

RESUMO

Insomnia is one of the most prevalent sleep disorders, which imparts tremendous societal and economic impact. However, the present pharmacotherapy is greatly limited by adverse effects, so it is necessary to explore new drugs for the treatment of insomnia. Radix Bupleuri (RB) has been widely used in traditional Chinese medicine for >2000 years; it has many pharmacological effects, including sedation and anticonvulsant properties. The present study investigated the effects of saikosaponin a (SSa), an active component of RB, on sleep and locomotion. Male C57BL/6j mice received intraperitoneal injections of SSa at three different dosages (0.625, 1.25, and 2.5 mg/kg). Sleep parameters were analysed by electroencephalography and electromyography. The open-field test was used to measure locomotor activities. Our present results showed that SSa treatment significantly increased the duration of non-rapid eye movement sleep and shortened sleep latency in a dose-dependent manner. A high dose of SSa (2.5 mg/kg) also decreased locomotor activities. Moreover, by measuring c-Fos expression and the calcium signal in the lateral hypothalamus (LH), we found that SSa treatment decreased neuronal activity in the LH. In conclusion, SSa might be the sleep-promoting component in RB and its mechanism may be related to the modulation of neuronal activity in the LH.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Animais , Eletroencefalografia , Humanos , Região Hipotalâmica Lateral , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácido Oleanólico/análogos & derivados , Saponinas , Sono/fisiologia
9.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35562990

RESUMO

Sleep and wakefulness are basic behavioral states that require coordination between several brain regions, and they involve multiple neurochemical systems, including neuropeptides. Neuropeptides are a group of peptides produced by neurons and neuroendocrine cells of the central nervous system. Like traditional neurotransmitters, neuropeptides can bind to specific surface receptors and subsequently regulate neuronal activities. For example, orexin is a crucial component for the maintenance of wakefulness and the suppression of rapid eye movement (REM) sleep. In addition to orexin, melanin-concentrating hormone, and galanin may promote REM sleep. These results suggest that neuropeptides play an important role in sleep-wake regulation. These neuropeptides can be divided into three categories according to their effects on sleep-wake behaviors in rodents and humans. (i) Galanin, melanin-concentrating hormone, and vasoactive intestinal polypeptide are sleep-promoting peptides. It is also noticeable that vasoactive intestinal polypeptide particularly increases REM sleep. (ii) Orexin and neuropeptide S have been shown to induce wakefulness. (iii) Neuropeptide Y and substance P may have a bidirectional function as they can produce both arousal and sleep-inducing effects. This review will introduce the distribution of various neuropeptides in the brain and summarize the roles of different neuropeptides in sleep-wake regulation. We aim to lay the foundation for future studies to uncover the mechanisms that underlie the initiation, maintenance, and end of sleep-wake states.


Assuntos
Galanina , Neuropeptídeos , Galanina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Neuropeptídeos/metabolismo , Orexinas/farmacologia , Sono/fisiologia , Peptídeo Intestinal Vasoativo/farmacologia
10.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163194

RESUMO

Good sleep quality is essential for maintaining the body's attention during wakefulness, which is easily affected by external factors such as an ambient temperature. However, the mechanism by which an ambient temperature influences sleep-wake behaviors remains unclear. The dorsomedial hypothalamus (DMH) has been reported to be involved in thermoregulation. It also receives projection from the preoptic area, which is an important region for sleep and energy homeostasis and the suprachiasmatic nucleus-a main control area of the clock rhythm. Therefore, we hypothesized that the DMH plays an important role in the regulation of sleep related to ambient temperatures. In this study, we found that cold exposure (24/20/16/12 °C) increased wakefulness and decreased non-rapid eye movement (NREM) sleep, while warm exposure (32/36/40/44 °C) increased NREM sleep and decreased wakefulness compared to 28 °C conditions in wild-type mice. Then, using non-specific and specific apoptosis, we found that lesions of whole DMH neurons and DMH γ-aminobutyric acid (GABA)-ergic neurons induced by caspase-3 virus aggravated the fluctuation of core body temperature after warm exposure and attenuated the change in sleep-wake behaviors during cold and warm exposure. However, chemogenetic activation or inhibition of DMH GABAergic neurons did not affect the sleep-wake cycle. Collectively, our findings reveal an essential role of DMH GABAergic neurons in the regulation of sleep-wake behaviors elicited by a change in ambient temperature.


Assuntos
Neurônios GABAérgicos/metabolismo , Hipotálamo/metabolismo , Sono/fisiologia , Animais , Regulação da Temperatura Corporal/fisiologia , Temperatura Baixa , Núcleo Hipotalâmico Dorsomedial , Neurônios GABAérgicos/fisiologia , Temperatura Alta , Hipotálamo Médio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Qualidade do Sono , Sono REM , Temperatura , Vigília/fisiologia
11.
J Neurosci Res ; 99(6): 1689-1703, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33713502

RESUMO

The lateral hypothalamus (LH) plays a key role in the maintenance of cortical activation and wakefulness. In the LH, the two main neuronal cell populations consist of excitatory glutamatergic neurons and inhibitory GABAergic neurons. Recent studies have shown that inhibitory LH GABAergic neurons are wake-promoting. However, the mechanism by which excitatory LH glutamatergic neurons contribute to sleep-wake regulation remains unclear. Using fiber photometry in male mice, we demonstrated that LH glutamatergic neurons exhibited high activities during both wakefulness and rapid eye movement sleep. Chemogenetic activation of LH glutamatergic neurons induced an increase in wakefulness that lasted for 6 hr, whereas suppression of LH glutamatergic neuronal activity caused a reduction in wakefulness. Brief optogenetic activation of LH glutamatergic neurons induced an immediate transition from slow-wave sleep to wakefulness, and long-lasting optogenetic stimulation of these neurons maintained wakefulness. Moreover, we found that LH-locus coeruleus/parabrachial nucleus and LH-basal forebrain projections mediated the wake-promoting effects of LH glutamatergic neurons. Taken together, our data indicate that LH glutamatergic neurons are essential for the induction and maintenance of wakefulness. The results presented here may advance our understanding of the role of LH in the control of wakefulness.


Assuntos
Glutamatos/fisiologia , Região Hipotalâmica Lateral/fisiologia , Neurônios/fisiologia , Vigília/fisiologia , Animais , Agonistas de Aminoácidos Excitatórios/farmacologia , Neurônios GABAérgicos , Masculino , Camundongos , Optogenética , Polissonografia , Fases do Sono , Sono REM/fisiologia
12.
Epilepsia ; 62(2): 517-528, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33400301

RESUMO

OBJECTIVE: Mutations of the cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders characterized by intractable epilepsy, intellectual disability, and autism. Multiple mouse models generated for mechanistic studies have exhibited phenotypes similar to some human pathological features, but none of the models has developed one of the major symptoms affecting CDKL5 deficiency disorder (CDD) patients: intractable recurrent seizures. As disrupted neuronal excitation/inhibition balance is closely associated with the activity of glutamatergic and γ-aminobutyric acidergic (GABAergic) neurons, our aim was to study the effect of the loss of CDKL5 in different types of neurons on epilepsy. METHODS: Using the Cre-LoxP system, we generated conditional knockout (cKO) mouse lines allowing CDKL5 deficiency in glutamatergic or GABAergic neurons. We employed noninvasive video recording and in vivo electrophysiological approaches to study seizure activity in these Cdkl5 cKO mice. Furthermore, we conducted Timm staining to confirm a morphological alteration, mossy fiber sprouting, which occurs with limbic epilepsy in both human and mouse brains. Finally, we performed whole-cell patch clamp in dentate granule cells to investigate cell-intrinsic properties and synaptic excitatory activity. RESULTS: We demonstrate that Emx1- or CamK2α-derived Cdkl5 cKO mice manifest high-frequency spontaneous seizure activities recapitulating the epilepsy of CDD patients, which ultimately led to sudden death in mice. However, Cdkl5 deficiency in GABAergic neurons does not generate such seizures. The seizures were accompanied by typical epileptic features including higher amplitude spikes for epileptiform discharges and abnormal hippocampal mossy fiber sprouting. We also found an increase in spontaneous and miniature excitatory postsynaptic current frequencies but no change in amplitudes in the dentate granule cells of Emx1-cKO mice, indicating enhanced excitatory synaptic activity. SIGNIFICANCE: Our study demonstrates that Cdkl5 cKO mice, serving as an animal model to study recurrent spontaneous seizures, have potential value for the pathological study of CDD-related seizures and for therapeutic innovation.


Assuntos
Síndromes Epilépticas/genética , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Proteínas Serina-Treonina Quinases/genética , Convulsões/genética , Espasmos Infantis/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Giro Denteado/citologia , Giro Denteado/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Síndromes Epilépticas/metabolismo , Síndromes Epilépticas/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios GABAérgicos/patologia , Proteínas de Homeodomínio , Camundongos , Camundongos Knockout , Fibras Musgosas Hipocampais/patologia , Neurônios/metabolismo , Neurônios/patologia , Técnicas de Patch-Clamp , Prosencéfalo , Convulsões/metabolismo , Convulsões/fisiopatologia , Espasmos Infantis/metabolismo , Espasmos Infantis/fisiopatologia , Fatores de Transcrição
13.
PLoS Biol ; 16(4): e2002909, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29652889

RESUMO

The rostromedial tegmental nucleus (RMTg), also called the GABAergic tail of the ventral tegmental area, projects to the midbrain dopaminergic system, dorsal raphe nucleus, locus coeruleus, and other regions. Whether the RMTg is involved in sleep-wake regulation is unknown. In the present study, pharmacogenetic activation of rat RMTg neurons promoted non-rapid eye movement (NREM) sleep with increased slow-wave activity (SWA). Conversely, rats after neurotoxic lesions of 8 or 16 days showed decreased NREM sleep with reduced SWA at lights on. The reduced SWA persisted at least 25 days after lesions. Similarly, pharmacological and pharmacogenetic inactivation of rat RMTg neurons decreased NREM sleep. Electrophysiological experiments combined with optogenetics showed a direct inhibitory connection between the terminals of RMTg neurons and midbrain dopaminergic neurons. The bidirectional effects of the RMTg on the sleep-wake cycle were mimicked by the modulation of ventral tegmental area (VTA)/substantia nigra compacta (SNc) dopaminergic neuronal activity using a pharmacogenetic approach. Furthermore, during the 2-hour recovery period following 6-hour sleep deprivation, the amount of NREM sleep in both the lesion and control rats was significantly increased compared with baseline levels; however, only the control rats showed a significant increase in SWA compared with baseline levels. Collectively, our findings reveal an essential role of the RMTg in the promotion of NREM sleep and homeostatic regulation.


Assuntos
Movimentos Oculares/fisiologia , Vias Neurais/fisiologia , Receptores Muscarínicos/genética , Sono/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Núcleo Dorsal da Rafe/anatomia & histologia , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/fisiologia , Eletrodos Implantados , Eletroencefalografia , Genes Reporter , Ácido Ibotênico/toxicidade , Locus Cerúleo/anatomia & histologia , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/fisiologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Mesencéfalo/anatomia & histologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/efeitos dos fármacos , Optogenética , Parte Compacta da Substância Negra/anatomia & histologia , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/metabolismo , Privação do Sono/fisiopatologia , Técnicas Estereotáxicas , Área Tegmentar Ventral/anatomia & histologia , Área Tegmentar Ventral/efeitos dos fármacos , Vigília/fisiologia , Ácido gama-Aminobutírico/metabolismo , Proteína Vermelha Fluorescente
14.
Brain ; 143(11): 3374-3392, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-33170925

RESUMO

Idiopathic rapid eye movement sleep behaviour disorder (RBD) is now recognized as an early manifestation of α-synucleinopathies. Increasing experimental studies demonstrate that manipulative lesion or inactivation of the neurons within the sublaterodorsal tegmental nucleus (also known as the subcoeruleus nucleus in humans) can induce RBD-like behaviours in animals. As current RBD animal models are not established on the basis of α-synucleinopathy, they do not represent the pathological substrate of idiopathic RBD and thus cannot model the phenoconversion to Parkinson's disease. The purpose of this study was therefore to establish an α-synucleinopathy-based RBD animal model with the potential to convert to parkinsonian disorder. To this end, we first determined the functional neuroanatomical location of the sublaterodorsal tegmental nucleus in wild-type C57BL/6J mice and then validated its function by recapitulating RBD-like behaviours based on this determined nucleus. Next, we injected preformed α-synuclein fibrils into the sublaterodorsal tegmental nucleus and performed regular polysomnographic recordings and parkinsonian behavioural and histopathological studies in these mice. As a result, we recapitulated RBD-like behaviours in the mice and further showed that the α-synucleinopathy and neuron degeneration identified within the sublaterodorsal tegmental nucleus acted as the neuropathological substrates. Subsequent parkinsonian behavioural studies indicated that the α-synucleinopathy-based RBD mouse model were not stationary, but could further progress to display parkinsonian locomotor dysfunction, depression-like disorder, olfactory dysfunction and gastrointestinal dysmotility. Corresponding to that, we determined α-synuclein pathology in the substantia nigra pars compacta, olfactory bulb, enteral neuroplexus and dorsal motor nucleus of vagus nerve, which could underlie the parkinsonian manifestations in mice. In conclusion, we established a novel α-synucleinopathy-based RBD mouse model and further demonstrated the phenoconversion of RBD to Parkinson's disease in this animal model.


Assuntos
Transtornos Parkinsonianos/psicologia , Transtorno do Comportamento do Sono REM/psicologia , Sinucleinopatias/psicologia , alfa-Sinucleína , Animais , Comportamento Animal , Depressão/etiologia , Depressão/psicologia , Modelos Animais de Doenças , Discinesias/etiologia , Eletroencefalografia , Eletromiografia , Motilidade Gastrointestinal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Polissonografia
15.
Sleep Breath ; 25(3): 1613-1623, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33200339

RESUMO

PURPOSE: Zao Ren An Shen capsule (ZRASC) which is composed of three kinds of traditional Chinese herbs is a popular Chinese medicine for the treatment of insomnia. This study investigated the hypnotic effect of ZRASC in an anxiety-like mouse model. METHODS: We determined the role of ZRASC in anxiety and co-morbid insomnia using electroencephalogram and electromyogram recordings. Anxiety-like behaviors were tested by using the open-field, light/dark box, or elevated plus-maze in mice. Immunohistochemical techniques were employed to reveal the mechanism by which ZRASC regulated anxiety and insomnia. RESULTS: ZRASC at 680 mg/kg prolonged the time spent in the central area, open arms area, and light box by 1.9, 2.3, and 1.7-fold respectively, compared with the vehicle control group in immobilization stress (IMS) mice. ZRASC at 680 mg/kg given at 08:00 h increased the amount of non-rapid eye movement sleep by 1.4-fold in a 2-h period after dosing in IMS mice. However, it did not alter the sleep-wake behaviors in normal mice. Immunohistochemistry showed that IMS increased c-Fos expression in the neurons of the stria terminalis and tuberomammillary nucleus by 1.8 and 1.6-fold, respectively. In addition, ZRASC (680 mg/kg) reversed the IMS-induced c-Fos expression. CONCLUSIONS: Our results suggest that ZRASC is an effective therapeutic strategy for both anxiety disorder and sleep disturbances in an anxiety-like mouse model.


Assuntos
Ansiedade/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Hipnóticos e Sedativos/uso terapêutico , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Resultado do Tratamento
16.
Proc Natl Acad Sci U S A ; 115(40): E9469-E9478, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30228120

RESUMO

The suprachiasmatic nucleus (SCN), the master circadian clock in mammals, sends major output signals to the subparaventricular zone (SPZ) and further to the paraventricular nucleus (PVN), the neural mechanism of which is largely unknown. In this study, the intracellular calcium levels were measured continuously in cultured hypothalamic slices containing the PVN, SPZ, and SCN. We detected ultradian calcium rhythms in both the SPZ-PVN and SCN regions with periods of 0.5-4.0 hours, the frequency of which depended on the local circadian rhythm in the SPZ-PVN region. The ultradian rhythms were synchronous in the entire SPZ-PVN region and a part of the SCN. Because the ultradian rhythms were not detected in the SCN-only slice, the origin of ultradian rhythm is the SPZ-PVN region. In association with an ultradian bout, a rapid increase of intracellular calcium in a millisecond order was detected, the frequency of which determined the amplitude of an ultradian bout. The synchronous ultradian rhythms were desynchronized and depressed by a sodium channel blocker tetrodotoxin, suggesting that a tetrodotoxin-sensitive network is involved in synchrony of the ultradian bouts. In contrast, the ultradian rhythm is abolished by glutamate receptor blockers, indicating the critical role of glutamatergic mechanism in ultradian rhythm generation, while a GABAA receptor blocker increased the frequency of ultradian rhythm and modified the circadian rhythm in the SCN. A GABAergic network may refine the circadian output signals. The present study provides a clue to unraveling the loci and network mechanisms of the ultradian rhythm.


Assuntos
Ondas Encefálicas/fisiologia , Sinalização do Cálcio/fisiologia , Relógios Circadianos/fisiologia , Neurônios GABAérgicos/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Animais , Ondas Encefálicas/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Relógios Circadianos/efeitos dos fármacos , Antagonistas de Receptores de GABA-A/farmacologia , Neurônios GABAérgicos/citologia , Camundongos , Núcleo Hipotalâmico Paraventricular/citologia , Tetrodotoxina/farmacologia
17.
Neurobiol Learn Mem ; 168: 107156, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31904548

RESUMO

Region- and pathway-specific plasticity within striatal circuits is critically involved in the acquisition and long-term retention of a new motor skill as it becomes automatized. However, the molecular substrates contributing to this plasticity remain unclear. Here, we examined the expression of the activity-regulated cytoskeleton-associated protein (Arc) in the associative or dorsomedial striatum (DMS) and the sensorimotor or dorsolateral striatum (DLS), as well as in striatonigral and striatopallidal neurons, during different skill learning phases in the accelerating rotarod task. We found that Arc was mainly expressed in the DMS during early motor learning and progressively increased in the DLS during gradual motor skill consolidation. Moreover, Arc was preferentially expressed in striatopallidal neurons early in training and gradually increased in striatonigral neurons later in training. These data demonstrate that in the dorsal striatum, the expression of Arc exhibits a region- and cell-specific transfer during the learning of a motor skill, suggesting a link between striatal Arc expression and motor skill learning in mice.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Destreza Motora/fisiologia , Neostriado/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Globo Pálido/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/metabolismo , Substância Negra/metabolismo
18.
Anesthesiology ; 130(1): 106-118, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30325744

RESUMO

BACKGROUND: The parabrachial nucleus (PBN), which is a brainstem region containing glutamatergic neurons, is a key arousal nucleus. Injuries to the area often prevent patient reanimation. Some studies suggest that brain regions that control arousal and reanimation are a key part of the anesthesia recovery. Therefore, we hypothesize that the PBN may be involved in regulating emergence from anesthesia. METHODS: We investigated the effects of specific activation or inhibition of PBN glutamatergic neurons on sevoflurane general anesthesia using the chemogenetic "designer receptors exclusively activated by designer drugs" approach. Optogenetic methods combined with polysomnographic recordings were used to explore the effects of transient activation of PBN glutamatergic neuron on sevoflurane anesthesia. Immunohistochemical techniques are employed to reveal the mechanism by which PBN regulated sevoflurane anesthesia. RESULTS: Chemogenetic activation of PBN glutamatergic neurons by intraperitoneal injections of clozapine-N-oxide decreased emergence time (mean ± SD, control vs. clozapine-N-oxide, 55 ± 24 vs. 15 ± 9 s, P = 0.0002) caused by sevoflurane inhalation and prolonged induction time (70 ± 15 vs. 109 ± 38 s, n = 9, P = 0.012) as well as the ED50 of sevoflurane (1.48 vs. 1.60%, P = 0.0002), which was characterized by a rightward shift of the loss of righting reflex cumulative curve. In contrast, chemogenetic inhibition of PBN glutamatergic neurons slightly increased emergence time (56 ± 26 vs. 87 ± 26 s, n = 8, P = 0.034). Moreover, instantaneous activation of PBN glutamatergic neurons expressing channelrhodopsin-2 during steady-state general anesthesia with sevoflurane produced electroencephalogram evidence of cortical arousal. Immunohistochemical experiments showed that activation of PBN induced excitation of cortical and subcortical arousal nuclei during sevoflurane anesthesia. CONCLUSIONS: Activation of PBN glutamatergic neurons is helpful to accelerate the transition from general anesthesia to an arousal state, which may provide a new strategy in shortening the recovery time after sevoflurane anesthesia.


Assuntos
Período de Recuperação da Anestesia , Anestésicos Inalatórios/administração & dosagem , Nível de Alerta/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Núcleos Parabraquiais/efeitos dos fármacos , Sevoflurano/administração & dosagem , Animais , Glutamatos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Modelos Animais
19.
Handb Exp Pharmacol ; 253: 359-381, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28646346

RESUMO

The classic endogenous somnogen adenosine promotes sleep via A1 and A2A receptors. In this chapter, we present an overview of the current knowledge regarding the regulation of adenosine levels, adenosine receptors, and available pharmacologic and genetic tools to manipulate the adenosine system. This is followed by a summary of current knowledge of the role of adenosine and its receptors in the regulation of sleep and wakefulness. Despite strong data implicating numerous brain areas, including the basal forebrain, the tuberomammillary nucleus, the lateral hypothalamus, and the nucleus accumbens, in the adenosinergic control of sleep, the complete neural circuitry in the brain involved in the sleep-promoting effects of adenosine remains unclear. Moreover, the popular demand for natural sleep aids has led to a search for natural compounds that can promote sleep via adenosine receptor activation. Finally, we discuss the effects of caffeine in man and the possible use of more selective adenosine receptor drugs for the treatment of sleep disorders.


Assuntos
Adenosina , Sono , Adenosina/metabolismo , Encéfalo/fisiologia , Vigília/fisiologia
20.
J Sleep Res ; 26(3): 386-393, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28318068

RESUMO

Natural helicid (4-formylphenyl-O-ß-d-allopyranoside), a main active constituent from seeds of the Chinese herb Helicia nilagirica, has been reported to exert a sedative, analgesic and hypnotic effect, and is used clinically to treat neurasthenic syndrome, vascular headaches and trigeminal neuralgia. In the current study, mechanical allodynia tests, electroencephalograms, electromyogram recordings and c-Fos expression in neuropathic pain-like model mice of partial sciatic nerve ligation were used to investigate the effect of helicid on neuropathic pain and co-morbid insomnia. Our results showed that helicid at a dose of 100, 200 or 400 mg kg-1 could increase the mechanical threshold by 2.5-, 2.8- and 3.1-fold for 3 h after administration, respectively. Helicid at 200 and 400 mg kg-1 given at 07:00 hours increased the amount of non-rapid eye movement sleep in a 3-h period by 1.27- and 1.35-fold in partial sciatic nerve ligated mice. However, helicid (400 mg kg-1 ) given at 21:00 hours did not change the sleep pattern in normal mice. Immunohistochemical study showed that helicid (400 mg kg-1 ) administration could reverse the increase of c-Fos expression in the neurons of the rostral anterior cingulate cortex and tuberomammillary nucleus, and the decrease of c-Fos expression in the ventrolateral preoptic area caused by partial sciatic nerve ligation. These results indicate that helicid is an effective agent for both neuropathic pain and sleep disturbances in partial sciatic nerve ligated mice.


Assuntos
Benzaldeídos/uso terapêutico , Neuralgia/complicações , Neuralgia/tratamento farmacológico , Distúrbios do Início e da Manutenção do Sono/etiologia , Distúrbios do Início e da Manutenção do Sono/prevenção & controle , Analgésicos/administração & dosagem , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Benzaldeídos/administração & dosagem , Benzaldeídos/farmacologia , Modelos Animais de Doenças , Eletroencefalografia , Eletromiografia , Genes fos/genética , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Hiperalgesia/diagnóstico , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Ligadura , Masculino , Camundongos , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Nervo Isquiático , Sono/efeitos dos fármacos , Sono/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa