Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Mikrochim Acta ; 188(8): 247, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244909

RESUMO

N-doped carbon dots (N-CDs) were fabricated in a simple procedure by hydrothermal treatment of cellobiose and urea. When excited at 235 nm or 327 nm, only one emission peak at around 420 nm has been observed. With the addition of phosalone, the excitation band at 235 nm was efficiently quenched within 1 min, while the excitation band at 327 nm showed little change. Accordingly, the fluorescence of the N-CDs-phosalone mixture showed quenching under 254-nm UV light, while nearly no fluorescence quenching could be observed under 365-nm UV light. This phenomenon provides a novel anti-false-positive mechanism for phosalone identification. Therefore, the label-free ratiometric sensor for rapid, naked-eye, and anti-false-positive detection of phosalone was proposed for the first time based on the intrinsic dual-excitation N-CDs. Under the optimum experimental conditions, the linear ranges of the excitation-based ratiometric assay were 0.08~4.0 µg/mL and 4.0~14.0 µg/mL; the limit of detection was 28.5 ng/mL. The as-constructed sensor was applied to detect phosalone residue in actual samples, and results were compared with the standard gas chromatographic (GC) method. The recoveries of the established sensor were between 90.0% and 110.0% with RSD lower than 6.6%, while that for the GC method was between 92.5% and 113.0% with RSD lower than 5.8%. Results reveal that the accuracy (recovery) and precision (RSD) of the as-constructed method are comparable to the standard GC method. In this paper, dual-excitation N-doped carbon dots (N-CDs) were synthesized by a simply one-step hydrothermal method for the first time. The novel dual-excitation ratiometric sensor based on the sole intrinsic N-CDs was constructed for phosalone sensing.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Compostos Organotiofosforados/análise , Resíduos de Praguicidas/análise , Pontos Quânticos/química , Artocarpus/química , Cactaceae/química , Carbono/química , Contaminação de Alimentos/análise , Ipomoea/química , Limite de Detecção , Nitrogênio/química
2.
Water Sci Technol ; 82(3): 492-502, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32960794

RESUMO

In this work, a user-friendly chitin-based adsorbent (CT-PmPD) was synthesized by in-situ polymerization of m-phenylenediamine on chitin bead, which could effectively remove Cr(VI) from water. The structure and morphology of the CT-PmPD were characterized by FT-IR, XRD, SEM, zeta potential and XPS. Specifically, the effect of adsorbed dosage, pH, contact time, adsorption temperature and coexisting salt on the adsorption of Cr(VI) were studied. Besides, the adsorption mechanism of CT-PmPD toward Cr(VI) were also analyzed. Consequently, CT-PmPD exhibited a monolayer adsorption and the Langmuir model fitted a Cr(VI) adsorption capacity reaching 185.4 mg/g at 298 K. The high adsorption capacity was attributed to the abundant amino groups of CT-PmPD, which could be protonated to boost the electrostatic attraction of Cr(VI) oxyanions, thus providing electron to reduce Cr(VI). Additionally, the CT-PmPD revealed a good regeneration and reusability capacity, maintaining most of its adsorption capacity even after five cycles of adsorption-desorption. This high adsorption capacity and excellent regeneration performance highlighted the great potential of CT-PmPD for the removal of Cr(VI).


Assuntos
Quitina , Poluentes Químicos da Água/análise , Adsorção , Cromo , Cinética , Fenilenodiaminas , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Soft Matter ; 11(26): 5301-12, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26053236

RESUMO

In an effort to construct smart artificial glutathione peroxidase (GPx) featuring high catalytic activity in an efficient preparation process, an artificial microgel GPx (PPAM-ADA-Te) has been prepared using a supramolecular host-guest self-assembly technique. Herein, 6,6'-telluro-bis(6-deoxy-ß-cyclodextrin) (CD-Te-CD) was selected as a tellurium-containing host molecule, which also served as the crosslinker for the scaffold of the supramolecular microgel. And an adamantane-containing block copolymer (PPAM-ADA) was designed and synthesized as a guest building block copolymer. Subsequently, PPAM-ADA-Te was constructed through the self-assembly of CD-Te-CD and PPAM-ADA. The formation of this self-assembled construct was confirmed by dynamic light scattering, NMR, SEM and TEM. Notably, PPAM-ADA-Te not only exhibits a significant temperature responsive catalytic activity, but also features the characteristic saturation kinetics behaviour similar to that of a natural enzyme catalyst. We demonstrate in this paper that both the hydrophobic microenvironment and the crosslinker in this supramolecular microgel network played significant roles in enhancing and altering the temperature responsive catalytic behaviour. The successful construction of PPAM-ADA-Te not only provides a novel method for the preparation of microgel artificial GPx with high catalytic activity but also provides properties suitable for the future development of intelligent antioxidant drugs.


Assuntos
Materiais Biomiméticos/química , Glutationa Peroxidase/metabolismo , Adamantano/química , Catálise , Desenho de Fármacos , Géis , Cinética , Modelos Moleculares , Conformação Molecular , Polímeros/química , Telúrio/química , beta-Ciclodextrinas/química
4.
Carbohydr Polym ; 328: 121713, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220345

RESUMO

Developing environmentally friendly film materials for packaging pesticides is significant yet challenging. The use of native starch for preparing inner packaging materials of pesticides is limited by its physicochemical properties. In this study, a novel strategy of synergetic mechanical activation (MA)-enhanced solid-phase esterification of starch and cooperative combination of starch and polyvinyl alcohol (PVA) was proposed to fabricate biodegradable and cold-water-soluble starch (St)/PVA films. The appropriate esterification of starch and favorable compatibility between starch and PVA contributed to the production of St/PVA films by the extrusion-blowing method. The as-prepared film with St/PVA ratio of 4:6 exhibited outstanding mechanical properties (tensile strengths of 21.0 MPa; elongation at break of 213.9 %), cold-water solubility (dissolution time of 90 s), and oxygen barrier performance (oxygen transmission rate of 1.41 cm3/(m2·day·bar)). The dissolved St/PVA films with amphiphilic groups were conducive to the emulsification of butachlor (a fat-soluble liquid pesticide) and the dispersibility of oxyfluorfen (a fat-soluble solid pesticide). Furthermore, a mechanism of the interaction between pesticides and the surface of weed leaves was proposed to reveal the enhanced efficacy of St/PVA films-packaged pesticides. The strategy based on MA-enhanced esterification and PVA blending is efficient to produce starch-based films suitable for inner packaging materials of pesticides.

5.
Carbohydr Polym ; 333: 121982, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494234

RESUMO

The production of high-performance starch-based packaging films by extrusion blowing is challenging, ascribed to poor processability of the blend precursors. In this study, a new strategy of mechanical activation (MA)-enhanced metal-organic coordination was proposed to improve the processability of starch (St)/polyvinyl alcohol (PVA) blend precursor, with calcium acetate (CA) as a chelating agent and glycerol as a plasticizer. MA pretreatment activated the hydroxyl groups of starch and PVA for constructing strong metal-organic coordination between CA and St/PVA during reactive extrusion, which effectively enhanced the melt processing properties of the blend precursor, contributing to the fabrication of high-performance St/PVA films by the extrusion-blowing method. The as-prepared St/PVA films exhibited excellent mechanical properties (tensile strength of 34.5 MPa; elongation at break of 271.8 %), water vapor barrier performance (water vapor permeability of 0.704 × 10-12 g·cm-1·s-1·Pa-1), and oxygen barrier performance (oxygen transmission rate of 0.7 cm3/(m2·day·bar)), along with high transmittance and good uniformity. These outstanding characteristics and performances can be attributed to the improved interfacial interaction and compatibility between the two matrix phases. This study uncovers the mechanism of MA-enhanced metal-organic coordination for improving the properties of starch-based films, which provides a convenient and eco-friendly technology for the preparation of high-performance biodegradable films.

6.
J Hazard Mater ; 465: 133381, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38171201

RESUMO

The treatment of emulsion wastewater poses significant challenges. In this study, a novel porous material, namely esterified bagasse/poly(N, N-dimethylacrylamide)/sodium alginate (SBS/PDMAA/Alg) aerogel, was developed for efficient demulsification and oil recovery. By grafting a poly(N-isopropylacrylamide) (PNIPAM) brush onto the SBS/PDMAA/Alg skeleton through free radical polymerization, the resulting aerogel exhibits both surface charge and a molecular brush structure. The aerogel demonstrates remarkable demulsification efficiency for cationic surfactant-stabilized emulsions at various concentrations, achieving a demulsification efficiency of 95.6% even at an oil content of 100 g L-1. Furthermore, the molecular brush structure extends the application range of the aerogel, enabling a demulsification efficiency of 98.3% for anionic and non-ionic surfactant-stabilized emulsions. The interpenetrating polymer network (IPN) structure formed by SBS, PDMAA, and alginate enhances the mechanical stability of the aerogel, enabling a demulsification efficiency of 91.3% even after 20 repeated cycles. The demulsification ability of the composite aerogel is attributed to its surface charge, high interfacial activity, and unique brush-like structure. A demulsification mechanism based on the synergistic effect of surface charge and molecular brush is proposed to elucidate the efficient demulsification process.

7.
Int J Biol Macromol ; 236: 123996, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907304

RESUMO

A novel starch-based model dough used to exploit staple foods was demonstrated to be feasible, which was based on damaged cassava starch (DCS) obtained by mechanical activation (MA). This study focused on the retrogradation behavior of starch dough and the feasibility of its application in functional gluten-free noodles. Starch retrogradation behavior was investigated by low field-nuclear magnetic resonance (LF-NMR), X-ray diffraction (XRD), scanning electron microscope (SEM), texture profile and resistant starch (RS) content analysis. During starch retrogradation, water migration, starch recrystallization and microstructure changes were observed. Short-term retrogradation could significantly alter the texture properties of starch dough, and long-term retrogradation promoted the formation of RS. The damage level influenced starch retrogradation, and damaged starch with the increasing damage level was beneficial to facilitate the starch retrogradation. Gluten-free noodles made from the retrograded starch had acceptable sensory quality, with darker color and better viscoelasticity than Udon noodles. This work provides a novel strategy for the proper utilization of starch retrogradation for the development of functional foods.


Assuntos
Manihot , Amido , Amido/química , Manihot/química , Alimentos , Armazenamento de Alimentos , Viscosidade
8.
Food Res Int ; 166: 112625, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914331

RESUMO

Starch-fatty acid complexes used as emulsifiers have caught great attention because of their renewability and excellent emulsifying property, the development of a simple and efficient synthesis method for the fabrication of starch-fatty acid complexes is still greatly challenging. Herein, the rice starch-fatty acid complexes (NRS-FA) were successfully prepared by mechanical activation method using different long chain fatty acids (myristic acid, palmitic acid, and stearic acid) and native rice starch (NRS) as the raw materials. The results showed that the prepared NRS-FA with a V-shaped crystalline structure exhibited a higher digestion resistance than NRS. Moreover, when the chain length of fatty acids increased from 14 to 18 carbons, the contact angle of the complexes was much closer to 90°, and the average particle size was smaller, deriving the better emulsifying property of NRS-FA18 complexes, which were suitable to be used as an emulsifier to stabilize curcumin-loaded Pickering emulsions. The results of storage stability and in vitro digestion showed that the curcumin retention could reach 79.4 % after 28 days of storage and 80.8 % of curcumin was retained in the system after simulated gastric digestion, showing good encapsulation and delivery performance of prepared Pickering emulsions, which attributed to the enhancement of the coverage of particles at the oil-water interface.


Assuntos
Curcumina , Amido , Emulsões/química , Amido/química , Curcumina/química , Ácidos Graxos , Técnicas de Síntese em Fase Sólida , Emulsificantes/química
9.
Chemosphere ; 319: 137979, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36736475

RESUMO

Nanoscale zero-valent iron (nZVI) has been widely used in the reductive removal of contaminants from water, yet it still fights against the inherent passive cover and the raise of medium pH. In this study, nZVI was supported onto a nitrogen-doped biochar (NBC) that was prepared by pyrolyzing shrimp shell for efficiently sequestrating aqueous selenite (Se(IV)). The resultant composite (NBC-nZVI) revealed a higher reactivity and electron utilization efficiency (EUE) than the bare nZVI in Se(IV) sequestration because of the positive charge, the buffering effect and the good conductivity of NBC. The kinetic rate and EUE of NBC-nZVI were increased by 143.4% and 15.3% compared to the bare nZVI, respectively, at initial pH of 3.0. The high removal capacity of 605.4 mg g-1 for NBC-nZVI was obtained at Se(IV) concentration of 1000 mg L-1, initial pH of 3.0, NBC-nZVI dosage of 1.0 g L-1 and contact time of 12 h. Moreover, NBC-nZVI exhibited a strong tolerance to solution pHs and coexisting compounds (e.g., humic acid) and could reduce the Se(IV) concentration from 5.0 mg L-1 to below the limit of drinking water (50 µg L-1) in real-world samples. This work exemplified a utilization of shrimp shell-derived NBC to simultaneously enhance the reactivity and EUE of nZVI for reductively removing contaminants.


Assuntos
Ferro , Poluentes Químicos da Água , Ferro/química , Ácido Selenioso/química , Elétrons , Poluentes Químicos da Água/análise , Água/química , Adsorção
10.
Int J Biol Macromol ; 233: 123552, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740114

RESUMO

Herein, a novel superdispersed calcium borate@polydopamine/cellulose acetate-laurate nanocomposite (CTAB-CB@PDA/CAL) is successfully synthesized by a double-template-regulated biomimetic mineralization strategy using PDA/CAL as a hard template and cetyltrimethylammonium bromide (CTAB) as a soft template and surface hydrophobic modifier. The results show that CB can grow uniformly on the CAL surface, and CTAB can improve the hydrophobicity of CTAB-CB@PDA/CAL due to the synergistic effect of the double templates, which contributes to the enhanced dispersibility and long-term dispersion stability of CTAB-CB@PDA/CAL in poly-alpha-olefin (PAO) base oil. Furthermore, CB can rapidly enter the friction interface due to the long substituents of CTAB and CAL, so CTAB-CB@PDA/CAL used as a lubricant additive in PAO base oil exhibits superior tribological performance compared to CB, CB/CAL, and CB@PDA/CAL.


Assuntos
Lauratos , Nanocompostos , Cetrimônio , Biomimética , Nanocompostos/química
11.
Int J Biol Macromol ; 237: 124196, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36972830

RESUMO

The development of sustainable catalysts for the efficient conversion of biomass to desirable chemicals is significant and challenging. Herein, a stable biochar (BC)-supported amorphous aluminum solid acid catalyst with Brønsted-Lewis dual acid sites was constructed through one-step calcination of a mechanical activation (MA)-treated precursor (starch, urea, and Al(NO3)3). The as-prepared N-doped BC (N-BC)-supported Al composite (MA-Al/N-BC) was used for the selective catalytic conversion of cellulose to produce levulinic acid (LA). MA treatment promoted uniform dispersion and stable embedding of Al-based components in the N-BC support with nitrogen- and oxygen-containing functional groups. This process provided the MA-Al/N-BC catalyst with Brønsted-Lewis dual acid sites and improved its stability and recoverability. When the MA-Al/N-BC catalyst was used under optimal reaction conditions (180 °C, 4 h), it achieved a cellulose conversion rate of 93.1% and a LA yield of 70.1%. Additionally, it also showed high activity for catalytic conversion of other carbohydrates. The results of this study offer a promising solution for the production of sustainable biomass-derived chemicals through the use of stable and eco-friendly catalysts.


Assuntos
Alumínio , Celulose , Ácidos de Lewis , Carboidratos , Catálise
12.
Bioresour Technol ; 387: 129600, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37532058

RESUMO

This study aimed to produce bio-based levulinic acid (LA) via direct and efficient conversion of cellulose catalyzed by a sustainable solid acid. A carbon foam (CF)-supported aluminotungstic acid (HAlW/CF) catalyst with Brønsted-Lewis dual-acidic sites was creatively engineered by a hydrothermal impregnation method. The activity of the HAlW/CF catalyst was determined via the hydrolysis and conversion of cellulose to prepare LA in aqueous system. The cooperative effect of Brønsted and Lewis acids in HAlW/CF resulted in high cellulose conversion (89.4%) and LA yield (60.9%) at 180 °C for 4 h, which were greater than the combined catalytic efficiencies of single HAlW and CF under the same conditions. The HAlW/CF catalyst in block form exhibited superior catalytic activity, facile separation from reaction system, and favorable reusability. This work offers novel perspectives for the development of recyclable dual-acidic catalysts to achieve one-pot catalytic conversion of biomass to value-added chemicals.


Assuntos
Celulose , Ácidos de Lewis , Carbono , Ácidos Levulínicos , Catálise
13.
Artigo em Inglês | MEDLINE | ID: mdl-35849425

RESUMO

Although the core-shell structure magnetic nanocomposites have been widely used as lubricant additives, their tribological properties are still poor under high temperature and high load. Herein, the graphitized C/Fe3O4 magnetic nanocomposites (g-C/Fe3O4) with an interpenetrating network structure were successfully fabricated by an in situ hydrothermal carbonization method combined with a subsequent ball milling process at room temperature. The results showed that the ball milling process not only promoted the transformation of graphitized carbon but also effectively eliminated the interfacial effect between carbon and Fe3O4. Moreover, the g-C/Fe3O4 used as a lubricant additive in rapeseed oil exhibited excellent tribological properties and high thermo-stability under 155 °C and 980 N, with the friction coefficient reduced by 32.8% compared to the independent Fe3O4. The enhanced tribological performance of g-C/Fe3O4 could be attributed to the graphitized carbon and its interpenetrating network structure under low load force (392 N), while under high load force (980 N), it could be ascribed to the synergistic effect between the graphitized carbon and magnetic Fe3O4 nanoparticles. This work not only offers a method for the synthesis of nanocomposite lubricant additives but also shows great potential in practical applications for high-temperature tribology.

14.
Int J Biol Macromol ; 220: 79-89, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973482

RESUMO

Pig hair (PH), a keratinous waste, was modified by ammonium thioglycolate in a ball milling to promote its performance of Hg(II) sequestration. The ball milling broke the hydrophobic cuticle sheath and enhanced the reduction of disulfide bond, which increased the sulfydryl content of the modified PH (BTPH) from 0.07 to 11.05 µmol/g. BTPH exhibited a significantly higher capture capacity of Hg(II) (415.4 mg/g) than PH (3.1 mg/g), as well as the commercial activated carbon (219.7 mg/g), and persisted its performance over a wide range of solution pH. Meanwhile, BTPH with a distribution coefficient of 5.703 × 105 mL/g could selectively capture Hg(II) from the water with the coexisting metal ions such as Mg(II), Cd(II) and Pb(II). Moreover, the low-cost BTPH could reduce the Hg(II) from 1.0 mg/L to well below the limit of drinkable water (2 µg/L) in real-world samples. Density functional theory (DFT) calculations and state-of-the-art characterizations illustrated that the binding of Hg(II) to sulfydryl groups was the main adsorption mechanism. Notably, BTPH decreased the mercury content of water spinaches from 24.1 to 0.50 mg/kg and thereby significantly reduced the phytotoxicity of Hg(II). This work therefore provides a sustainable way to utilize keratinous wastes for the remediation of aqueous Hg(II).


Assuntos
Mercúrio , Poluentes Químicos da Água , Adsorção , Animais , Cádmio/química , Carvão Vegetal/química , Dissulfetos , Cabelo/química , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Lipoproteínas HDL , Mercúrio/química , Compostos de Sulfidrila/química , Suínos , Água , Poluentes Químicos da Água/química
15.
J Hazard Mater ; 433: 128808, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35381514

RESUMO

The use of aerogels to selectively recover oil from oily wastewater is effective but challenging. In this study, a new carboxylated carbon nanotube/chitosan aerogel (CCNT/CA) with switchable wettability was developed as a smart adsorbent for fast oil absorption and oil recovery. Vinyltrimethoxysilane and thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) was grafted onto the surface of the CCNT/CA skeleton, and the resulting smart aerogel (PNI-Si@CCNT/CA) exhibited temperature responsiveness. PNI-Si@CCNT/CA exhibited an excellent reversible conversion between hydrophilicity and hydrophobicity when the temperature was changed to below or above the lower critical solution temperature (LCST) of PNIPAAm (~32 °C). Most importantly, CCNT significantly increased the oil absorption capacity, improved the mechanical properties, accelerated phonon conduction, enhanced thermal conductivity (80.57 mW m-1 K-1), improved the temperature response rate, shortened the oil desorption time (15 min), and improved the oil/water separation efficiency of PNI-Si@CCNT/CA because a strong interface interaction occurred between CCNT and chitosan. Moreover, PNI-Si@CCNT/CA absorbed oil at 45 °C and released the absorbed oil at 25 °C. It maintained its good adsorption performance after 15 cycles, and this was ascribed to its excellent mechanical properties and stable structure.

16.
Int J Biol Macromol ; 183: 982-991, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33971229

RESUMO

Dust pollution is an important factor restricting social development and affecting human health, especially in some developing countries. Herein, mechanical activation-assisted solid phase reaction (MASPR) and conventional liquid phase (LP) method were employed to synthesize different superabsorbent polymers (SAPs), defined as SAP-MA and SAP-LP, respectively. The rheological properties, crystal structure, changes of functional groups, and dust suppression performance of the SAPs prepared by these two methods were compared, and the dust suppression mechanism of SAPs was discussed via the adsorption experiment between dust suppressant and dust particles. The results showed that SAPs were successfully prepared by the two methods. Compared with SAP-LP, SAP-MA with lower molecular weight, higher grafting rate, and better fluidity and water absorption showed excellent suppression performance. This enhancement could be attributed to that the SAP-MA exhibited lower crystallinity and better film-forming ability, anti-evaporation, anti-consolidation, and permeability induced by MA. Furthermore, the effective chemical adsorption between SAPs and dust particles had a stable consolidation effect. This environmentally-friendly method for the preparation of starch-based super absorbent polymer for road dust suppressant may provide new insights for the valorization of cassava starch and large-scale production of dust suppressant.


Assuntos
Polímeros/química , Amido/química , Adsorção , Técnicas de Síntese em Fase Sólida
17.
ACS Appl Mater Interfaces ; 13(50): 60337-60350, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34889099

RESUMO

Titanium dioxide (TiO2) that offers high light-harvesting capacity and efficient charge separation holds great promise in photocatalysis. In this work, an in situ one-pot hydrothermal synthesis was explored to prepare a C-decorated and Cl-doped sea-urchin-like rutile TiO2 (Cl-TiO2/C). The growth of sea-urchin-like 3D hierarchical nanostructures was governed by a mechanism of nucleation and nuclei growth-dissolution-recrystallization growth from time-dependent morphology evolution. The crystal morphology and the content of Cl and C could be controlled by the volume ratio of HCl to TBOT. Systematic studies indicated that the 0.4Cl-TiO2/C sample (the volume ratio of HCl to TBOT was 0.4) exhibited the highest visible-light photocatalytic activity for the degradation of rhodamine B, with kinetic rate constant (k) of 0.0221 min-1, being 6.5 and 3.75 times higher than that of TiO2 and Cl-TiO2. The enhanced photocatalytic performance could be attributed to the high charge separation and transfer efficiency induced by Cl-doping and C decoration and the excellent light-harvesting capacity caused by its sea-urchin-like nanostructure. Moreover, the 0.4Cl-TiO2/C sample exhibited good reusability and excellent structural stability for five cycles. This facile one-pot approach provides new insight for the preparation of a TiO2-based photocatalyst with excellent photocatalytic performance for potential application in practical wastewater treatment.

18.
Chemosphere ; 280: 130646, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33940456

RESUMO

A stepwise processing strategy, including initial neutralization, chemical mineralization, and complete neutralization treating steps, was developed to effectively treat and utilize the highly acidic wastewater derived from titanium dioxide production. Approximately 94.6% of SO42-, 100% of Fe, and most of other metals were recovered to produce white gypsum, schwertmannite, and Fe0/Fe3O4@biochar (Fe0/Fe3O4@BC) composite in the corresponding treating steps. The resulting effluent with neutral pH and a small amount of metal ions could be discharged to general sewage treatment plant for further processing. Schwertmannite was applied as a heterogeneous Fenton-like catalyst to stimulate H2O2 to produce active radicals for effective degradation and mineralization of methyl orange (MO) in solution. The MO removal of 100% and total organic carbon removal of 91.1% were achieved in schwertmannite/H2O2 reaction system, and schwertmannite exhibited good stability and reusability. Fe0/Fe3O4@BC composite was applied to remove Cr(VI), with the adsorption capacity of 67.74 mg g-1. The removal of Cr(VI) using Fe0/Fe3O4@BC composite was a chemisorption process, including the adsorption of Cr(VI), reduction of Cr(VI) to Cr(III), and co-precipitation of Cr(III)/Fe(III) oxides/hydroxides. This stepwise treating strategy is a promising technology for effective treatment of highly acidic industrial wastewater and comprehensive utilization of the related products.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Cromo/análise , Compostos Férricos , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise
19.
Food Chem ; 363: 130344, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34147895

RESUMO

This study focused on constructing a high-solid reaction system to prepare type 3 resistant starch (RS3) with high-amylose maize starch as raw material by mechanical activation (MA) pretreatment combined with thermal and freeze-thaw treatments. MA pretreatment effectively destroyed the crystal structure and molecular structure of native starch. MA damaged starch with a certain viscosity could form dough with a small amount of water to construct a starch continuous phase system. RS content increased with the damage levels of starch as the formation of double helix structure, attributed to that the molecules of MA damaged starch could be easy to move and form recrystallization structure. Thermal and freeze-thaw treatments contributed to strong interaction of starch-water and the re-formation of internal crystal structure of MA damaged starch to form RS3. This study provides insight into the development of a highly effective approach for large scale production of resistant starch.


Assuntos
Amilose , Zea mays , Amido Resistente , Amido , Viscosidade
20.
Int J Biol Macromol ; 189: 242-250, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34425120

RESUMO

In this work, a combined mechanical activation and FeCl3 (MA + FeCl3) method was applied to pretreat chitin to enhance the degree of hydrothermal carbonization. MA + FeCl3 pretreatment significantly disrupt the crystalline region of chitin and Fe3+ entered into the molecular chain, resulting in the destruction of the stable structure of chitin. The chemical and structural properties of hydrochars were characterized by EA, SEM, FTIR, XRD, XPS, 13C solid state NMR, and N2 adsorption-desorption analyses. The results showed that the H/C and O/C atomic ratios of HC-MAFCT/230 (the hydrochar derived from MA + FeCl3 pretreated chitin with hydrothermal reaction temperature of 230 °C) were 0.96 and 0.34, respectively. Van Krevelen diagram indicated that the hydrothermal carbonization of chitin underwent a series of reactions such as dehydration, decarboxylation, and aromatization. HC-MAFCT/230 had abundant oxygen- and nitrogen-containing functional groups. HC-MAFCT/230 exhibited a porous structure, with the specific surface area of 128 m2 g-1, which was a promising carbon material.


Assuntos
Carbono/química , Quitina/química , Cloretos/química , Compostos Férricos/química , Fenômenos Mecânicos , Temperatura , Água/química , Adsorção , Configuração de Carboidratos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Carvão Vegetal/química , Nitrogênio , Espectroscopia Fotoeletrônica , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa