Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 199: 107711, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37116227

RESUMO

Beta vulgaris var. cicla is an edible, ornamental and horticultural plant. However, the difference of components and contents of betalain in beets with different leaf color are not well understood. Here, the stress resistance and metabolites of two B. vulgaris var. cicla cultivars were determined. The differences in stress resistance between red leaf-colored chard (RC) and yellow leaf-colored chard (YC) were positively related to betacyanins (BC) and betaxathins (BX) content in the leaves. Furthermore, a total of 3615 distinct metabolites were identified by UPLC-QTOF-MS in two cultivars, including 70 alkaloids and their derivatives, 249 flavonoids, and 264 terpenoids. There were 17 metabolites attributed to betalain biosynthesis pathway, seven of nine BC were up-regulated, and eight BX showed no significant difference in RC compared with YC. The contents of celosianin II and betanin were the highest BC in RC, at approximately 84.38 and 19.97 times that of YC, respectively. The content of portulacaxanthin II was the highest BX in two beets. Additionally, the BvCYP450 genes were identified based on genome, and the members that might be involved in betalain biosynthesis were screened. BvCYP76AD27, a member of the BvCYP76AD subfamily, had a higher expression level in RC than YC under freezing, drought and shading stress. In yeast Saccharomyces cerevisiae, BvCYP76AD5 and BvCYP76AD27 only hydroxylated tyrosine to L-DOPA, which was transformed into portulacaxanthin II by 4,5-DOPA extradiol dioxygenase. The results contribute to illustrating the molecular mechanism of betalain biosynthesis and provide useful information for further investigation of beet chemistry and sufficient utilization of this species.


Assuntos
Beta vulgaris , Betalaínas , Betalaínas/química , Betalaínas/metabolismo , Beta vulgaris/genética , Tirosina/metabolismo , Levodopa/análise , Levodopa/metabolismo , Folhas de Planta/metabolismo , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa