Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674946

RESUMO

Metal nanostructure-treated polymers are widely recognized as the key material responsible for a specific antibacterial response in medical-based applications. However, the finding of an optimal bactericidal effect in combination with an acceptable level of cytotoxicity, which is typical for metal nanostructures, prevents their expansion from being more significant so far. This study explores the possibility of firmly anchoring silver nanoparticles (AgNPs) into polyetherether ketone (PEEK) with a tailored surface morphology that exhibits laser-induced periodic surface structures (LIPSS). We demonstrated that laser-induced forward transfer technology is a suitable tool, which, under specific conditions, enables uniform decoration of the PEEK surface with AgNPs, regardless of whether the surface is planar or LIPSS structured. The antibacterial test proved that AgNPs-decorated LIPSS represents a more effective bactericidal protection than their planar counterparts, even if they contain a lower concentration of immobilized particles. Nanostructured PEEK with embedded AgNPs may open up new possibilities in the production of templates for replication processes in the construction of functional bactericidal biopolymers or may be directly used in tissue engineering applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Prata/química , Polietilenoglicóis/química , Cetonas/química , Antibacterianos/farmacologia , Antibacterianos/química
2.
Appl Environ Microbiol ; 87(15): e0061421, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34020937

RESUMO

Methanogens represent the final decomposition step in anaerobic degradation of organic matter, occurring in the digestive tracts of various invertebrates. However, factors determining their community structure and activity in distinct gut sections are still debated. In this study, we focused on the tropical millipede species Archispirostreptus gigas (Diplopoda, Spirostreptidae) and Epibolus pulchripes (Diplopoda, Pachybolidae), which release considerable amounts of methane. We aimed to characterize relationships between physicochemical parameters, methane production rates, and methanogen community structure in the two major gut sections, midgut and hindgut. Microsensor measurements revealed that both sections were strictly anoxic, with reducing conditions prevailing in both millipedes. Hydrogen concentration peaked in the anterior hindgut of E. pulchripes. In both species, the intestinal pH was significantly higher in the hindgut than in the midgut. An accumulation of acetate and formate in the gut indicated bacterial fermentation activities in the digestive tracts of both species. Phylogenetic analysis of 16S rRNA genes showed a prevalence of Methanobrevibacter spp. (Methanobacteriales), accompanied by a small fraction of so-far-unclassified "Methanomethylophilaceae" (Methanomassiliicoccales), in both species, which suggests that methanogenesis is mostly hydrogenotrophic. We conclude that anoxic conditions, negative redox potential, and bacterial production of hydrogen and formate promote gut colonization by methanogens. The higher activities of methanogens in the hindgut are explained by the higher pH of this compartment and their association with ciliates, which are restricted to this compartment and present an additional source of methanogenic substrates. IMPORTANCE Methane (CH4) is the second most important atmospheric greenhouse gas after CO2 and is believed to account for 17% of global warming. Methanogens are a diverse group of archaea and can be found in various anoxic habitats, including digestive tracts of plant-feeding animals. Termites, cockroaches, the larvae of scarab beetles, and millipedes are the only arthropods known to host methanogens and emit large amounts of methane. Millipedes are ranked as the third most important detritivores after termites and earthworms, and they are considered keystone species in many terrestrial ecosystems. Both methane-producing and non-methane-emitting species of millipedes have been observed, but what limits their methanogenic potential is not known. In the present study, we show that physicochemical gut conditions and the distribution of symbiotic ciliates are important factors determining CH4 emission in millipedes. We also found close similarities to other methane-emitting arthropods, which might be associated with their similar plant-feeding habits.


Assuntos
Artrópodes/microbiologia , Microbioma Gastrointestinal , Trato Gastrointestinal/metabolismo , Metano/metabolismo , Animais , Bactérias/genética , Bactérias/metabolismo , Formiatos/metabolismo , Microbioma Gastrointestinal/genética , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Oxigênio/análise , Filogenia , RNA Ribossômico 16S/genética
3.
J Exp Bot ; 71(4): 1628-1644, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31760430

RESUMO

Solving the global environmental and agricultural problem of chronic low-level cadmium (Cd) exposure requires better mechanistic understanding. Here, soybean (Glycine max) plants were exposed to Cd concentrations ranging from 0.5 nM (background concentration, control) to 3 µM. Plants were cultivated hydroponically under non-nodulating conditions for 10 weeks. Toxicity symptoms, net photosynthetic oxygen production and photosynthesis biophysics (chlorophyll fluorescence: Kautsky and OJIP) were measured in young mature leaves. Cd binding to proteins [metalloproteomics by HPLC-inductively coupled plasma (ICP)-MS] and Cd ligands in light-harvesting complex II (LHCII) [X-ray absorption near edge structure (XANES)], and accumulation of elements, chloropyll, and metabolites were determined in leaves after harvest. A distinct threshold concentration of toxicity onset (140 nM) was apparent in strongly decreased growth, the switch-like pattern for nutrient uptake and metal accumulation, and photosynthetic fluorescence parameters such as Φ RE10 (OJIP) and saturation of the net photosynthetic oxygen release rate. XANES analyses of isolated LHCII revealed that Cd was bound to nitrogen or oxygen (and not sulfur) atoms. Nutrient deficiencies caused by inhibited uptake could be due to transporter blockage by Cd ions. The changes in specific fluorescence kinetic parameters indicate electrons not being transferred from PSII to PSI. Inhibition of photosynthesis combined with inhibition of root function could explain why amino acid and carbohydrate metabolism decreased in favour of molecules involved in Cd stress tolerance (e.g. antioxidative system and detoxifying ligands).


Assuntos
Cádmio , Glycine max , Cádmio/toxicidade , Clorofila , Fotossíntese , Folhas de Planta
4.
Int J Mol Sci ; 21(7)2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32260477

RESUMO

This paper review current trends in applications of nanomaterials in tissue engineering. Nanomaterials applicable in this area can be divided into two groups: organic and inorganic. Organic nanomaterials are especially used for the preparation of highly porous scaffolds for cell cultivation and are represented by polymeric nanofibers. Inorganic nanomaterials are implemented as they stand or dispersed in matrices promoting their functional properties while preserving high level of biocompatibility. They are used in various forms (e.g., nano- particles, -tubes and -fibers)-and when forming the composites with organic matrices-are able to enhance many resulting properties (biologic, mechanical, electrical and/or antibacterial). For this reason, this contribution points especially to such type of composite nanomaterials. Basic information on classification, properties and application potential of single nanostructures, as well as complex scaffolds suitable for 3D tissues reconstruction is provided. Examples of practical usage of these structures are demonstrated on cartilage, bone, neural, cardiac and skin tissue regeneration and replacements. Nanomaterials open up new ways of treatments in almost all areas of current tissue regeneration, especially in tissue support or cell proliferation and growth. They significantly promote tissue rebuilding by direct replacement of damaged tissues.


Assuntos
Nanoestruturas/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Humanos , Medicina Regenerativa/métodos
5.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396769

RESUMO

The properties of materials at the nanoscale open up new methodologies for engineering prospective materials usable in high-end applications. The preparation of composite materials with a high content of an active component on their surface is one of the current challenges of materials engineering. This concept significantly increases the efficiency of heterogeneous processes moderated by the active component, typically in biological applications, catalysis, or drug delivery. Here we introduce a general approach, based on laser-induced optomechanical processing of silver colloids, for the preparation of polymer surfaces highly enriched with silver nanoparticles (AgNPs). As a result, the AgNPs are firmly immobilized in a thin surface layer without the use of any other chemical mediators. We have shown that our approach is applicable to a broad spectrum of polymer foils, regardless of whether they absorb laser light or not. However, if the laser radiation is absorbed, it is possible to transform smooth surface morphology of the polymer into a roughened one with a higher specific surface area. Analyses of the release of silver from the polymer surface together with antibacterial tests suggested that these materials could be suitable candidates in the fight against nosocomial infections and could inhibit the formation of biofilms with a long-term effect.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Polímeros/química , Prata/química , Eletroquímica , Luz , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Modelos Teóricos , Propriedades de Superfície
6.
Int J Mol Sci ; 18(2)2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28212308

RESUMO

Antimicrobial biocompatible polymers form a group of highly desirable materials in medicinal technology that exhibit interesting thermal and mechanical properties, and high chemical resistance. There are numerous types of polymers with antimicrobial activity or antimicrobial properties conferred through their proper modification. In this review, we focus on the second type of polymers, especially those whose antimicrobial activity is conferred by nanotechnology. Nanotechnology processing is a developing area that exploits the antibacterial effects of broad-scale compounds, both organic and inorganic, to form value-added medical devices. This work gives an overview of nanostructured antimicrobial agents, especially silver ones, used together with biocompatible polymers as effective antimicrobial composites in healthcare. The bactericidal properties of non-conventional antimicrobial agents are compared with those of conventional ones and the advantages and disadvantages are discussed.


Assuntos
Anti-Infecciosos/administração & dosagem , Desinfecção , Equipamentos e Provisões , Nanoestruturas , Polímeros , Prata , Anti-Infecciosos/química , Materiais Biocompatíveis/química , Infecção Hospitalar/microbiologia , Infecção Hospitalar/prevenção & controle , Infecção Hospitalar/transmissão , Desinfecção/métodos , Equipamentos e Provisões/microbiologia , Humanos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia , Polímeros/química , Prata/química , Propriedades de Superfície
7.
ACS Appl Mater Interfaces ; 15(15): 19646-19652, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37022802

RESUMO

This work suggests new morphology for the AlGaN/GaN interface which enhances electron mobility in two-dimensional electron gas (2DEG) of high-electron mobility transistor (HEMT) structures. The widely used technology for the preparation of GaN channels in AlGaN/GaN HEMT transistors is growth at a high temperature of around 1000 °C in an H2 atmosphere. The main reason for these conditions is the aim to prepare an atomically flat epitaxial surface for the AlGaN/GaN interface and to achieve a layer with the lowest possible carbon concentration. In this work, we show that a smooth AlGaN/GaN interface is not necessary for high electron mobility in 2DEG. Surprisingly, when the high-temperature GaN channel layer is replaced by the layer grown at a temperature of 870 °C in an N2 atmosphere using TEGa as a precursor, the electron Hall mobility increases significantly. This unexpected behavior can be explained by a spatial separation of electrons by V-pits from the regions surrounding dislocation which contain increased concentration of point defects and impurities.

8.
Materials (Basel) ; 15(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36234257

RESUMO

A set of GaN layers prepared by metalorganic vapor phase epitaxy under different technological conditions (growth temperature carrier gas type and Ga precursor) were investigated using variable energy positron annihilation spectroscopy (VEPAS) to find a link between technological conditions, GaN layer properties, and the concentration of gallium vacancies (VGa). Different correlations between technological parameters and VGa concentration were observed for layers grown from triethyl gallium (TEGa) and trimethyl gallium (TMGa) precursors. In case of TEGa, the formation of VGa was significantly influenced by the type of reactor atmosphere (N2 or H2), while no similar behaviour was observed for growth from TMGa. VGa formation was suppressed with increasing temperature for growth from TEGa. On the contrary, enhancement of VGa concentration was observed for growth from TMGa, with cluster formation for the highest temperature of 1100 °C. From the correlation of photoluminescence results with VGa concentration determined by VEPAS, it can be concluded that yellow band luminescence in GaN is likely not connected with VGa; additionally, increased VGa concentration enhances excitonic luminescence. The probable explanation is that VGa prevent the formation of some other highly efficient nonradiative defects. Possible types of such defects are suggested.

9.
Nanomaterials (Basel) ; 11(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34578601

RESUMO

As inflammation frequently occurs after the implantation of a medical device, biocompatible, antibacterial materials must be used. Polymer-metal nanocomposites are promising materials. Here we prepared enhanced polyethylene naphthalate (PEN) using surface modification techniques and investigated its suitability for biomedical applications. The PEN was modified by a KrF laser forming periodic ripple patterns with specific surface characteristics. Next, Au/Ag nanowires were deposited onto the patterned PEN using vacuum evaporation. Atomic force microscopy confirmed that the surface morphology of the modified PEN changed accordingly with the incidence angle of the laser beam. Energy-dispersive X-ray spectroscopy showed that the distribution of the selected metals was dependent on the evaporation technique. Our bimetallic nanowires appear to be promising antibacterial agents due to the presence of antibacterial noble metals. The antibacterial effect of the prepared Au/Ag nanowires against E. coli and S. epidermidis was demonstrated using 24 h incubation with a drop plate test. Moreover, a WST-1 cytotoxicity test that was performed to determine the toxicity of the nanowires showed that the materials could be considered non-toxic. Collectively, these results suggest that prepared Au/Ag nanostructures are effective, biocompatible surface coatings for use in medical devices.

10.
Plants (Basel) ; 10(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205810

RESUMO

Tobacco seedlings (Nicotiana tabacum L cv. Wisconsin 38) were treated for 24 h with colloidal solution of silver and gold nanoparticles (AgNPs and AuNPs) of different size or cultivated for 8 weeks on soil polluted with these NPs. DNA damage in leaf and roots nuclei was evaluated by the comet assay. AgNPs of the size 22-25 nm at concentrations higher than 50 mg·L-1 significantly increased the tail moments (TM) values in leaf nuclei compared to the negative control. Ag nanoparticles of smaller size 12-15 nm caused a slight increase in tail moment without significant difference from the negative control. The opposite effect of AgNPs was observed on roots. The increasing tail moment was registered for smaller NPs. Similar results were observed for AuNPs at a concentration of 100 mg·L-1. DNA damaging effects after growing tobacco plants for 8 weeks in soil polluted with AgNPs and AuNPs of different size and concentrations were observed. While lower concentrations of both types of particles had no effect on the integrity of DNA, concentration of 30 mg·kg-1 of AgNPs caused significant DNA damage in leaves of tobacco plants. AuNPs had no effect even at the highest concentration. The content of Ag was determined by ICP-MS in above-ground part of plants (leaves) after 8 weeks of growth in soil with 30 mg·kg-1. AgNPs and was 2.720 ± 0.408 µg·g-1. Long term effect is much less harmful probably due to the plant restoration capability.

11.
Nanoscale Res Lett ; 12(1): 424, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28637351

RESUMO

Polyetheretherketone (PEEK) has good chemical and biomechanical properties that are excellent for biomedical applications. However, PEEK exhibits hydrophobic and other surface characteristics which cause limited cell adhesion. We have investigated the potential of Ar plasma treatment for the formation of a nanostructured PEEK surface in order to enhance cell adhesion. The specific aim of this study was to reveal the effect of the interface of plasma-treated and gold-coated PEEK matrices on adhesion and spreading of mouse embryonic fibroblasts. The surface characteristics (polarity, surface chemistry, and structure) before and after treatment were evaluated by various experimental techniques (gravimetry, goniometry, X-ray photoelectron spectroscopy (XPS), and electrokinetic analysis). Further, atomic force microscopy (AFM) was employed to examine PEEK surface morphology and roughness. The biological response of cells towards nanostructured PEEK was evaluated in terms of cell adhesion, spreading, and proliferation. Detailed cell morphology was evaluated by scanning electron microscopy (SEM). Compared to plasma treatment, gold coating improved PEEK wettability. The XPS method showed a decrease in the carbon concentration with increasing time of plasma treatment. Cell adhesion determined on the interface between plasma-treated and gold-coated PEEK matrices was directly proportional to the thickness of a gold layer on a sample. Our results suggest that plasma treatment in a combination with gold coating could be used in biomedical applications requiring enhanced cell adhesion.

12.
Mater Sci Eng C Mater Biol Appl ; 71: 125-131, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27987681

RESUMO

We have investigated the application of Ar plasma for creation of nanostructured ultra high molecular weight polyethylene (PE) surface in order to enhance adhesion of mouse embryonic fibroblasts (L929). The aim of this study was to investigate the effect of the interface between plasma-treated and gold-coated PE on adhesion and spreading of cells. The surface properties of pristine samples and its modified counterparts were studied by different experimental techniques (gravimetry, goniometry and X-ray photoelectron spectroscopy (XPS), electrokinetic analysis), which were used for characterization of treated and sputtered layers, polarity and surface chemical structure, respectively. Further, atomic force microscopy (AFM) was employed to study the surface morphology and roughness. Biological responses of cells seeded on PE samples were evaluated in terms of cell adhesion, spreading, morphology and proliferation. Detailed cell morphology and intercellular connections were followed by scanning electron microscopy (SEM). As it was expected the thickness of a deposited gold film was an increasing function of the sputtering time. Despite the fact that plasma treatment proceeded in inert plasma, oxidized degradation products were formed on the PE surface which would contribute to increased hydrophilicity (wettability) of the plasma treated polymer. The XPS method showed a decrease in carbon concentration with increasing plasma treatment. Cell adhesion measured on the interface between plasma treated and gold coated PE was inversely proportional to the thickness of a gold layer on a sample.


Assuntos
Materiais Revestidos Biocompatíveis , Ouro , Teste de Materiais , Gases em Plasma/química , Polietilenos , Animais , Linhagem Celular , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Ouro/química , Ouro/farmacologia , Camundongos , Polietilenos/química , Polietilenos/farmacologia , Propriedades de Superfície
13.
Aquat Toxicol ; 177: 226-36, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27309311

RESUMO

Essential trace elements (Cu(2+), Zn(2+), etc) lead to toxic effects above a certain threshold, which is a major environmental problem in many areas of the world. Here, environmentally relevant sub-micromolar concentrations of Cu(2+) and simulations of natural light and temperature cycles were applied to the aquatic macrophyte Ceratophyllum demersum a s a model for plant shoots. In this low irradiance study resembling non-summer conditions, growth was optimal in the range 7.5-35nM Cu, while PSII activity (Fv/Fm) was maximal around 7.5nM Cu. Damage to the light harvesting complex of photosystem II (LHCII) was the first target of Cu toxicity (>50nM Cu) where Cu replaced Mg in the LHCII-trimers. This was associated with a subsequent decrease of Chl a as well as heat dissipation (NPQ). The growth rate was decreased from the first week of Cu deficiency. Plastocyanin malfunction due to the lack of Cu that is needed for its active centre was the likely cause of diminished electron flow through PSII (ΦPSII). The pigment decrease added to the damage in the photosynthetic light reactions. These mechanisms ultimately resulted in decrease of starch and oxygen production.


Assuntos
Cobre/toxicidade , Magnoliopsida/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/metabolismo , Biomarcadores/metabolismo , Cobre/química , Cobre/deficiência , Luz , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Fotossíntese/efeitos dos fármacos , Fotossíntese/fisiologia , Proteoma/metabolismo , Proteômica , Testes de Toxicidade , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa