Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Data Brief ; 6: 899-902, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26937468

RESUMO

The systemic lipid modifying drug, niacin, can directly improve human microvascular endothelial cell angiogenic function under lipotoxic conditions, possibly through activation of niacin receptors "Niacin receptor activation improves human microvascular endothelial cell angiogenic function during lipotoxicity" (Hughes-Large et al. 2014). Here we provide accompanying data collected using Affymetrix GeneChip microarrays to identify changes in gene expression in human microvascular endothelial cells treated with 10 µM niacin. Statistical analyses of robust multi-array average (RMA) values revealed that only 16 genes exhibited greater than 1.3-fold differential expression. Of these 16, only 5 were identified protein coding genes, while 3 of the remaining 11 genes appeared to be small nuclear/nucleolar RNAs. Altered expression of EFCAB4B, NAP1L2, and OR13C8 was confirmed by real time quantitative PCR.

2.
Atherosclerosis ; 237(2): 696-704, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25463108

RESUMO

OBJECTIVE: Niacin (nicotinic acid) as a monotherapy can reduce vascular disease risk, but its mechanism of action remains controversial, and may not be dependent on systemic lipid modifying effects. Niacin has recently been shown to improve endothelial function and vascular regeneration, independent of correcting dyslipidemia, in rodent models of vascular injury and metabolic disease. As a potential biosynthetic precursor for NAD(+), niacin could elicit these vascular benefits through NAD(+)-dependent, sirtuin (SIRT) mediated responses. Alternatively, niacin may act through its receptor, GPR109A, to promote endothelial function, though endothelial cells are not known to express this receptor. We hypothesized that niacin directly improves endothelial cell function during exposure to lipotoxic conditions and sought to determine the potential mechanism(s) involved. METHODS AND RESULTS: Angiogenic function in excess palmitate was assessed by tube formation following treatment of human microvascular endothelial cells (HMVEC) with either a relatively low concentration of niacin (10 µM), or nicotinamide mononucleotide (NMN) (1 µM), a direct NAD(+) precursor. Although both niacin and NMN improved HMVEC tube formation during palmitate overload, only NMN increased cellular NAD(+) and SIRT1 activity. We further observed that HMVEC express GRP109A. Activation of this receptor with either acifran or MK-1903 recapitulated niacin-induced improvements in HMVEC tube formation, while GPR109A siRNA diminished the effect of niacin. CONCLUSION: Niacin, at a low concentration, improves HMVEC angiogenic function under lipotoxic conditions, likely independent of NAD(+) biosynthesis and SIRT1 activation, but rather through niacin receptor activation.


Assuntos
Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Microcirculação , Niacina/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Aorta/metabolismo , Apoptose , Bovinos , Morte Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Colágeno/química , Combinação de Medicamentos , Células Endoteliais/citologia , Humanos , Imuno-Histoquímica , Laminina/química , Lipídeos/química , Síndrome Metabólica/metabolismo , NAD/química , Mononucleotídeo de Nicotinamida/química , Obesidade/metabolismo , Ligação Proteica , Proteoglicanas/química , Pirazóis/química , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Albumina Sérica/química
3.
Stem Cells Dev ; 21(11): 1863-76, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22309189

RESUMO

Transplanted human bone marrow (BM) and umbilical cord blood (UCB) progenitor cells activate islet-regenerative or revascularization programs depending on the progenitor subtypes administered. Using purification of multiple progenitor subtypes based on a conserved stem cell function, high aldehyde dehydrogenase (ALDH) activity (ALDH(hi)), we have recently shown that transplantation of BM-derived ALDH(hi) progenitors improved systemic hyperglycemia and augmented insulin secretion by increasing islet-associated proliferation and vascularization, without increasing islet number. Conversely, transplantation of culture-expanded multipotent-stromal cells (MSCs) derived from BM ALDH(hi) cells augmented total beta cell mass via formation of beta cell clusters associated with the ductal epithelium, without sustained islet vascularization. To identify paracrine effectors produced by islet-regenerative MSCs, culture-expanded BM ALDH(hi) MSCs were transplanted into streptozotocin-treated nonobese diabetic/severe combine immune deficient (SCID) mice and segregated into islet-regenerative versus nonregenerative cohorts based on hyperglycemia reduction, and subsequently compared for differential production of mRNA and secreted proteins. Regenerative MSCs showed increased expression of matrix metalloproteases, epidermal growth factor receptor (EGFR)-activating ligands, and downstream effectors of Wnt signaling. Regenerative MSC supernatant also contained increased levels of pro-angiogenic versus pro-inflammatory cytokines, and augmented the expansion of ductal epithelial but not beta cells in vitro. Conversely, co-culture with UCB ALDH(hi) cells induced beta cell but not ductal epithelial cell proliferation. Sequential transplantation of MSCs followed by UCB ALDH(hi) cells improved hyperglycemia and glucose tolerance by increasing beta cell mass associated with the ductal epithelium and by augmenting intra-islet capillary densities. Thus, combinatorial human progenitor cell transplantation stimulated both islet-regenerative and revascularization programs. Understanding the progenitor-specific pathways that modulate islet-regenerative and revascularization processes may provide new approaches for diabetes therapy.


Assuntos
Ilhotas Pancreáticas/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina , Regeneração , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/farmacologia , Animais , Biomarcadores/metabolismo , Medula Óssea/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura/métodos , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Ativação Enzimática , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Sangue Fetal/metabolismo , Humanos , Imuno-Histoquímica , Ilhotas Pancreáticas/patologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neovascularização Fisiológica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estreptozocina , Transcrição Gênica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa