Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 25(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485968

RESUMO

New soluble and intensely near-IR-absorbing transition metal (Ti, Zr, V, Ni) complexes were synthesized using a redox non-innocent N,N'-bis(3,5-di-tertbutyl-2-hydroxy-phenyl) -1,2-phenylenediamine (H4L) as a ligand precursor. In all the complexes, ([Ti(Lox)2, [Zr(Lox)2], [V(Lsq1)(HLox)] and [Ni(HLox)2], two organic molecules coordinate to the metal center as tri- or tetradentate ligands. The solid-state structures of the complexes were determined using single crystal XRD, and the compounds were further characterized with Electrospray Ionisation Mass Spectrometry (ESI-MS). Thermoanalytical measurements indicated the thermal stabilities of the complexes. All compounds absorb strongly in the near-IR region and show very interesting magnetic and electrochemical properties. Moreover, it was shown that the V and Ni complexes can also convert absorbed near-IR photons to (un)paired electrons, which indicates great promise in photovoltaic applications.


Assuntos
Ligantes , Metais/química , Oxirredução , Espectroscopia de Luz Próxima ao Infravermelho , Técnicas de Química Sintética , Complexos de Coordenação/química , Cristalografia por Raios X , Técnicas Eletroquímicas , Eletrônica , Elétrons , Espectroscopia de Ressonância Magnética , Magnetismo , Estrutura Molecular , Níquel/química , Espectrometria de Massas por Ionização por Electrospray , Elementos de Transição/química , Difração de Raios X
2.
ACS Appl Nano Mater ; 6(6): 4887-4897, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37006912

RESUMO

Despite great attention toward transition metal tellurates especially M3TeO6 (M = transition metal) in magnetoelectric applications, control on single phasic morphology-oriented growth of these tellurates at the nanoscale is still missing. Herein, a hydrothermal synthesis is performed to synthesize single-phased nanocrystals of two metal tellurates, i.e., Ni3TeO6 (NTO with average particle size ∼37 nm) and Cu3TeO6 (CTO ∼ 140 nm), using NaOH as an additive. This method favors the synthesis of pure NTO and CTO nanoparticles without the incorporation of Na at pH = 7 in MTO crystal structures such as Na2M2TeO6, as it happens in conventional synthesis approaches such as solid-state reaction and/or coprecipitation. Systematic characterization techniques utilizing in-house and synchrotron-based characterization methods for the morphological, structural, electronic, magnetic, and photoconductivity properties of nanomaterials showed the absence of Na in individual particulate single-phase MTO nanocrystals. Prepared MTO nanocrystals also exhibit slightly higher antiferromagnetic interactions (e.g., T N-NTO = 57 K and T N-CTO = 68 K) compared to previously reported MTO single crystals. Interestingly, NTO and CTO show not only a semiconducting nature but also photoconductivity. The proposed design scheme opens the door to any metal tellurates for controllable synthesis toward different applications. Moreover, the photoconductivity results of MTO nanomaterials prepared serve as a preliminary proof of concept for potential application as photodetectors.

3.
ACS Omega ; 6(50): 34572-34579, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963942

RESUMO

The evolution of lattice strain on crystallographic domain structures and magnetic properties of epitaxial low-bandwidth manganite Gd0.6Ca0.4MnO3 (GCMO) films have been studied with films on different substrates: SrTiO3, (LaAlO3)0.3(Sr2AlTaO6)0.7, SrLaAlO3, and MgO. The X-ray diffraction data reveals that all of the films, except the films on MgO, are epitaxial and have an orthorhombic structure. Cross-sectional transmission electron microscopy (TEM) shows lattice mismatch-dependent microstructural defects. Large-enough tensile strain can increase oxygen vacancies concentration near the interface and can induce vacancies in the substrate. In addition, a second phase was observed in the films with tensile strain. However, compressive strain causes dislocations in the interface and a mosaic domain structure. On the other hand, the magnetic properties of the films, including saturation magnetization, coercive field, and transport property depend systematically on the substrate-induced strain. Based on these results, the choice of appropriate substrate is an important key to obtaining high-quality GCMO film, which can affect the functionality of potential device applications.

4.
ACS Appl Mater Interfaces ; 13(15): 18365-18371, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33832220

RESUMO

We report on the resistive switching (RS) properties of Al/Gd1-xCaxMnO3 (GCMO)/Au thin-film memristors. The devices were studied over the whole calcium substitution range x as a function of electrical field and temperature. The RS properties were found to be highly dependent on the Ca substitution. The optimal concentration was determined to be near x = 0.9, which is higher than the values reported for other similar manganite-based devices. We utilize an equivalent circuit model which accounts for the obtained results and allows us to determine that the electrical conduction properties of the devices are dominated by the Poole-Frenkel conduction mechanism for all compositions. The model also shows that lower trap energy values are associated with better RS properties. Our results indicate that the main RS properties of Al/GCMO/Au devices are comparable to those of other similar manganite-based materials, but there are marked differences in the switching behavior, which encourage further exploration of mixed-valence perovskite manganites for RS applications.

5.
Dalton Trans ; 50(43): 15831-15840, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34708847

RESUMO

We report here the syntheses of a diamagnetic Fe complex [Fe(HL)2] (1), prepared by reacting a redox non-innocent ligand precursor N,N'-bis(3,5-di-tert-butyl-2-hydroxy-phenyl)-1,2-phenylenediamine (H4L) with FeCl3, and its phenoxazine derivative [Fe(L')2] (2), which was obtained via intra-ligand cyclisation of the parent complex. Magnetic measurements, accompanied by spectroscopic, structural and computational analyses show that 1 can be viewed as a rather unusual Fe(III) complex with a diamagnetic ground state in the studied temperature range due to a strong antiferromagnetic coupling between the low-spin Fe(III) ion and a radical ligand. For a paramagnetic high-spin Fe(II) complex 2 it was found that, when crystalline, it undergoes a thermally induced process where 25% of the molecules in the material change to a diamagnetic low-spin ground state below 100 K. Single crystal X-ray studies conducted at 95 K afforded detailed structural evidence for this partial change of spin state of 2 showing the existence of crystallographically distinct molecules in a 3 : 1 ratio which exist in high- and low-spin states, respectively. Also, the magnetic behaviour of 2 was found to be related with the crystallinity of the material as demonstrated by near-IR radiation to unpaired electrons conversion ability of amorphous sample of 2.

6.
Sci Rep ; 11(1): 6010, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727621

RESUMO

A nanograined YBCO target, where a great number of grain boundaries, pores etc. exist, is shown to hold an alternative approach to future pulsed laser deposition based high-temperature superconductor thin film and coated conductor technologies. Although the nanograined material is introduced earlier, in this work, we comprehensively demonstrate the modified ablation process, together with unconventional nucleation and growth mechanisms that produces dramatically enhanced flux pinning properties. The results can be generalized to other complex magnetic oxides, where an increased number of defects are needed for modifying their magnetic and electrical properties, thus improving their usability in the future technological challenges.

7.
Sci Rep ; 10(1): 3169, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081988

RESUMO

In order to understand how the doping with self-assembled nanorods of different sizes and concentrations as well as applied magnetic fields affect the critical current anisotropy in YBa2Cu3O7-x (YBCO) thin films close to YBCO c-axis, we present an extensive and systematic computational study done by molecular dynamics simulation. The simulations are also used to understand experimentally measured Jc(θ) curves for BaHfO3, BaZrO3 and BaSnO3 doped YBCO thin films with the help of nanorod parameters obtained from transmission electron microscopy measurements. Our simulations reveal that the relation between applied and matching field plays a crucial role in the formation of Jc(θ)-peak around YBCO c-axis (c-peak) due to vortex-vortex interactions. We also find how different concentrations of different size nanorods effect the shape of the c-peak and explain how different features, such as double c-peak structures, arise. In addition to this, we have quantitatively explained that, even in an ideal superconductor, the overdoping of nanorods results in decrease of the critical current. Our results can be widely used to understand and predict the critical current anisotropy of YBCO thin films to improve and develop new pinscapes for various transport applications.

8.
Sci Rep ; 9(1): 15425, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31659228

RESUMO

Striving to improve the critical current density Jc of superconducting YBa2Cu3O6+x (YBCO) thin films via enhanced vortex pinning, the interplay between film growth mechanisms and the formation of nanosized defects, both natural and artificial, is systematically studied in undoped and BaZrO3 (BZO)-doped YBCO thin films. The films were grown via pulsed laser deposition (PLD), varying the crystal grain size of the targets in addition to the dopant content. The microstructure of the PLD target has been observed to have a great impact on that of the deposited thin films, including the formation of vortex pinning centers, which has direct implications on the superconducting performance, especially on the isotropy of flux pinning properties. Based on experimentally measured angular dependencies of Jc, coupled with a molecular dynamics (MD) simulation of flux pinning in the YBCO films, we present a quantitative model of how the splay and fragmentation of BZO nanorods artifically introduced into the YBCO film matrix explain the majority of the observed critical current anisotropy.

9.
Materials (Basel) ; 11(7)2018 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-29937505

RESUMO

The formation of superconducting nanocomposites from preformed nanocrystals is still not well understood. Here, we examine the case of ZrO2 nanocrystals in a YBa2Cu3O7−x matrix. First we analyzed the preformed ZrO2 nanocrystals via atomic pair distribution function analysis and found that the nanocrystals have a distorted tetragonal crystal structure. Second, we investigated the influence of various surface ligands attached to the ZrO2 nanocrystals on the distribution of metal ions in the pyrolyzed matrix via secondary ion mass spectroscopy technique. The choice of stabilizing ligand is crucial in order to obtain good superconducting nanocomposite films with vortex pinning. Short, carboxylate based ligands lead to poor superconducting properties due to the inhomogeneity of metal content in the pyrolyzed matrix. Counter-intuitively, a phosphonate ligand with long chains does not disturb the growth of YBa2Cu3O7−x. Even more surprisingly, bisphosphonate polymeric ligands provide good colloidal stability in solution but do not prevent coagulation in the final film, resulting in poor pinning. These results thus shed light on the various stages of the superconducting nanocomposite formation.

10.
J Mech Behav Biomed Mater ; 75: 89-96, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28709036

RESUMO

In skeletal reconstructions, composites, such as bisphenol-A-glycidyldimethacrylate resin reinforced with glass fibers, are potentially useful alternatives to metallic implants. Recently, we reported a novel method to prepare bioactive surfaces for these composites. Surface etching by Excimer laser was used to expose bioactive glass granules embedded in the resin. The purpose of this study was to analyze two types of bioactive surfaces created by this technique. The surfaces contained bioactive glass and hydroxyapatite granules. The selected processing parameters were adequate for the creation of the surfaces. However, the use of porous hydroxyapatite prevented the complete exposure the granules. In cell culture, for bioactive glass coatings, the pattern of proliferation of MG63 cells was comparable to that in the positive control group (Ti6Al4V) while inferior cell proliferation was observed on the surfaces containing hydroxyapatite granules. Scanning electron microscopy revealed osteointegration of implants with both types of surfaces. The technique is suitable for the exposure of solid bioactive glass granules. However, the long-term performance of the surfaces needs further assessment.


Assuntos
Durapatita , Vidro , Lasers de Excimer , Próteses e Implantes , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Microscopia Eletrônica de Varredura , Porosidade , Propriedades de Superfície
11.
Sci Rep ; 7(1): 14682, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089637

RESUMO

The flux pinning properties of the high temperature superconductor YBa2Cu3O7-δ (YBCO) have been conventionally improved by creating both columnar and dot-like pinning centres into the YBCO matrix. To study the effects of differently doped multilayer structures on pinning, several samples consisting of a multiple number of individually BaZrO3 (BZO) and BaCeO3 (BCO) doped YBCO layers were fabricated. In the YBCO matrix, BZO forms columnar and BCO dot-like defects. The multilayer structure improves pinning capability throughout the whole angular range, giving rise to a high critical current density, J c. However, the BZO doped monolayer reference still has the most isotropic J c. Even though BZO forms nanorods, in this work the samples with multiple thin layers do not exhibit a c axis peak in the angular dependence of J c. The angular dependencies and the approximately correct magnitude of J c were also verified using a molecular dynamics simulation.

12.
Med Eng Phys ; 38(7): 664-670, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27134152

RESUMO

Biostable fiber-reinforced composites (FRC) prepared from bisphenol-A-glycidyldimethacrylate (BisGMA)-based thermosets reinforced with E-glass fibers are promising alternatives to metallic implants due to the excellent fatigue resistance and the mechanical properties matching those of bone. Bioactive glass (BG) granules can be incorporated within the polymer matrix to improve the osteointegration of the FRC implants. However, the creation of a viable surface layer using BG granules is technically challenging. In this study, we investigated the potential of Excimer laser ablation to achieve the selective removal of the matrix to expose the surface of BG granules. A UV-vis spectroscopic study was carried out to investigate the differences in the penetration of light in the thermoset matrix and BG. Thereafter, optimal Excimer laser ablation parameters were established. The formation of a calcium phosphate (CaP) layer on the surface of the laser-ablated specimens was verified in simulated body fluid (SBF). In addition, the proliferation of MG63 cells on the surfaces of the laser-ablated specimens was investigated. For the laser-ablated specimens, the pattern of proliferation of MG63 cells was comparable to that in the positive control group (Ti6Al4V). We concluded that Excimer laser ablation has potential for the creation of a bioactive surface on FRC-implants.


Assuntos
Materiais Biocompatíveis/química , Vidro/química , Lasers de Excimer , Próteses e Implantes , Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Teste de Materiais , Propriedades de Superfície
13.
ACS Nano ; 10(8): 7532-41, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27438899

RESUMO

The role of proximity contact with magnetic oxides is of particular interest from the expectations of the induced spin polarization and weak interactions at the graphene/magnetic oxide interfaces, which would allow us to achieve efficient spin-polarized injection in graphene-based spintronic devices. A combined approach of topmost-surface-sensitive spectroscopy utilizing spin-polarized metastable He atoms and ab initio calculations provides us direct evidence for the magnetic proximity effect in the junctions of single-layer graphene and half-metallic manganite La0.7Sr0.3MnO3 (LSMO). It is successfully demonstrated that in the graphene/LSMO junctions a sizable spin polarization is induced at the Fermi level of graphene in parallel to the spin polarization direction of LSMO without giving rise to a significant modification in the π band structure.

14.
ACS Appl Mater Interfaces ; 8(31): 20440-7, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27447197

RESUMO

To actualize the high spintronic application potential of complex magnetic oxides, it is essential to fabricate these materials as thin films with the best possible magnetic and electrical properties. Sr2FeMoO6 is an outstanding candidate for such applications, but presently no thin film synthesis route, which would preserve the magnetic properties of bulk Sr2FeMoO6, is currently known. In order to address this problem, we present a comprehensive experimental and theoretical study where we link the magnetic and half metallic properties of Sr2FeMoO6 thin films to lattice strain, Fe-Mo antisite disorder and oxygen vacancies. We find the intrinsic effect of strain on the magnetic properties to be very small, but also that an increased strain will significantly stabilize the Sr2FeMoO6 lattice against the formation of antisite disorder and oxygen vacancies. These defects, on the other hand, are recognized to drastically influence the magnetism of Sr2FeMoO6 in a nonlinear manner. On the basis of the findings, we propose strain manipulation and reductive annealing as optimization pathways for improving the spintronic functionality of Sr2FeMoO6.

15.
ACS Appl Mater Interfaces ; 7(40): 22228-37, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26402298

RESUMO

We report fabrication of a hybrid organic semiconductor-inorganic complex oxide interface of rubrene and La0.67Sr0.33MnO3 (LSMO) for spintronic devices using pulsed laser deposition (PLD) and investigate the interface structure and chemical bonding-dependent magnetic properties. Our results demonstrate that with proper control of growth parameters, thin films of organic semiconductor rubrene can be deposited without any damage to the molecular structure. Rubrene, a widely used organic semiconductor with high charge-carrier mobility and spin diffusion length, when grown as thin films on amorphous and crystalline substrates such as SiO2-glass, indium-tin oxide (ITO), and LSMO by PLD at room temperature and a laser fluence of 0.19 J/cm2, reveals amorphous structure. The Raman spectra verify the signatures of both Ag and Bg Raman active modes of rubrene molecules. X-ray reflectivity measurements indicate a well-defined interface formation between surface-treated LSMO and rubrene, whereas X-ray photoelectron spectra indicate the signature of hybridization of the electronic states at this interface. Magnetic measurements show that the ferromagnetic property of the rubrene-LSMO interface improves by >230% compared to the pristine LSMO surface due to this proposed hybridization. Intentional disruption of the direct contact between LSMO and rubrene by insertion of a dielectric AlOx layer results in an observably decreased ferromagnetism. These experimental results demonstrate that by controlling the interface formation between organic semiconductor and half-metallic oxide thin films, it is possible to engineer the interface spin polarization properties. Results also confirm that by using PLD for consecutive growth of different layers, contamination-free interfaces can be obtained, and this finding is significant for the well-controlled and reproducible design of spin-polarized interfaces for future hybrid spintronics devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa