Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 167: 32-39, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35331697

RESUMO

Sphingomyelinases ensure ceramide production and play an integral role in cell turnover, inward budding of vesicles and outward release of exosomes. Recent data indicate a unique role for neutral sphingomyelinase (nSMase) in the control of ceramide-dependent exosome release and inflammatory pathways. Further, while inhibition of nSMase in vascular tissue attenuates the progression of atherosclerosis, little is known regarding its role on metabolic signaling and arterial vasomotor function. Accordingly, we hypothesized that nSMase inhibition with GW4869, would attenuate Western diet (WD) - induced increases in aortic stiffness through alterations in pathways which lead to oxidative stress, inflammation and vascular remodeling. Six week-old female C57BL/6L mice were fed either a WD containing excess fat (46%) and fructose (17.5%) for 16 weeks or a standard chow diet (CD). Mice were variably treated with GW4869 (2.0 µg/g body weight, intraperitoneal injection every 48 h for 12 weeks). WD feeding increased nSMase2 expression and activation while causing aortic stiffening and impaired vasorelaxation as determined by pulse wave velocity (PWV) and wire myography, respectively. Moreover, these functional abnormalities were associated with aortic remodeling and attenuated AMP-activated protein kinase, Sirtuin 1, and endothelial nitric oxide synthase activation. GW4869 treatment prevented the WD-induced increases in nSMase activation, PWV, and impaired endothelium dependent/independent vascular relaxation. GW4869 also inhibited WD-induced aortic CD36 expression, lipid accumulation, oxidative stress, inflammatory responses, as well as aortic remodeling. These findings indicate that targeting nSMase prevents diet - induced aortic stiffening and impaired vascular relaxation by attenuating oxidative stress, inflammation and adverse vascular remodeling.


Assuntos
Rigidez Vascular , Animais , Ceramidas , Dieta Ocidental/efeitos adversos , Feminino , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Onda de Pulso , Esfingomielina Fosfodiesterase , Remodelação Vascular
2.
Am J Physiol Regul Integr Comp Physiol ; 322(3): R253-R262, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35107025

RESUMO

Mineralocorticoid receptor (MR) activation plays an important role in hepatic insulin resistance. However, the precise mechanisms by which MR activation promotes hepatic insulin resistance remains unclear. Therefore, we sought to investigate the roles and mechanisms by which MR activation promotes Western diet (WD)-induced hepatic steatosis and insulin resistance. Six-week-old C57BL6J mice were fed either mouse chow or a WD, high in saturated fat and refined carbohydrates, with or without the MR antagonist spironolactone (1 mg/kg/day) for 16 wk. WD feeding resulted in systemic insulin resistance at 8 and 16 wk. WD also induced impaired hepatic insulin metabolic signaling via phosphoinositide 3-kinases/protein kinase B pathways, which was associated with increased hepatic CD36, fatty acid transport proteins, fatty acid-binding protein-1, and hepatic steatosis. Meanwhile, consumption of a WD-induced hepatic mitochondria dysfunction, oxidative stress, and inflammatory responses. These abnormalities occurring in response to WD feeding were blunted with spironolactone treatment. Moreover, spironolactone promoted white adipose tissue browning and hepatic glucose transporter type 4 expression. These data suggest that enhanced hepatic MR signaling mediates diet-induced hepatic steatosis and dysregulation of adipose tissue browning, and subsequent hepatic mitochondria dysfunction, oxidative stress, inflammation, as well as hepatic insulin resistance.


Assuntos
Fígado Gorduroso , Resistência à Insulina , Animais , Dieta Hiperlipídica , Dieta Ocidental/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Mineralocorticoides/metabolismo , Espironolactona/metabolismo , Espironolactona/farmacologia
3.
Endocrinology ; 163(11)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36039677

RESUMO

Excess circulating lipids increase total intramyocellular (IMC) lipid content and ectopic fat storage, resulting in lipotoxicity and insulin resistance in skeletal muscle. Consumption of a diet high in fat and refined sugars-a Western diet (WD)-has been shown to activate mineralocorticoid receptors (MRs) and promote insulin resistance. However, our understanding of the precise mechanisms by which enhanced MR activation promotes skeletal muscle insulin resistance remains unclear. In this study, we investigated the mechanisms by which enhanced MR signaling in soleus muscle promotes ectopic skeletal muscle lipid accumulation and related insulin resistance. Six-week-old C57BL/6J mice were fed either a mouse chow diet or a WD with or without spironolactone (1 mg/kg/day) for 16 weeks. Spironolactone attenuated 16 weeks of WD-induced in vivo glucose intolerance and insulin resistance, and improved soleus insulin metabolic signaling. Improved insulin sensitivity was accompanied by increased glucose transporter 4 (Glut4) expression in conjunction with decreased soleus free fatty acid and IMC lipid content, as well as CD36 expression. Additionally, spironolactone prevented WD-induced soleus mitochondria dysfunction. Furthermore, MR signaling also mediated WD/aldosterone-induced reductions in soleus microRNA (miR)-99a, which was identified to negatively target CD36 and prevented palmitic acid-induced increases in CD36 expression, lipid droplet formation, mitochondria dysfunction, and insulin resistance in C2C12 cells. These data indicate that inhibition of MR activation with spironolactone prevented diet-induced abnormal expression of miR-99a, which had the capacity to reduce CD36, leading to reduced IMC lipid content and improved soleus mitochondria function and insulin sensitivity.


Assuntos
Resistência à Insulina , MicroRNAs , Aldosterona/metabolismo , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta , Açúcares da Dieta , Ácidos Graxos não Esterificados/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Ácido Palmítico/metabolismo , Receptores de Mineralocorticoides/metabolismo , Espironolactona/farmacologia
4.
Front Physiol ; 12: 588358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854438

RESUMO

Enhanced mineralocorticoid receptor (MR) signaling is critical to the development of endothelial dysfunction and arterial stiffening. However, there is a lack of knowledge about the role of MR-induced adipose tissue inflammation in the genesis of vascular dysfunction in women. In this study, we hypothesize that MR activation in myeloid cells contributes to angiotensin II (Ang II)-induced aortic stiffening and endothelial dysfunction in females via increased pro-inflammatory (M1) macrophage polarization. Female mice lacking MR in myeloid cells (MyMRKO) were infused with Ang II (500 ng/kg/min) for 4 weeks. This was followed by determinations of aortic stiffness and vasomotor responses, as well as measurements of markers of inflammation and macrophage infiltration/polarization in different adipose tissue compartments. MyMRKO mice were protected against Ang II-induced aortic endothelial stiffening, as assessed via atomic force microscopy in aortic explants, and vasorelaxation dysfunction, as measured by aortic wire myography. In alignment, MyMRKO mice were protected against Ang II-induced macrophage infiltration and M1 polarization in visceral adipose tissue (VAT) and thoracic perivascular adipose tissue (tPVAT). Collectively, this study demonstrates a critical role of MR activation in myeloid cells in the pathogenesis of vascular dysfunction in females associated with pro-inflammatory macrophage polarization in VAT and tPVAT. Our data have potential clinical implications for the prevention and management of cardiovascular disease in women, who are disproportionally at higher risk for poor outcomes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa