Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Langmuir ; 40(31): 16258-16271, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39039729

RESUMO

The current use of TiO2 nanoparticles raises questions about their impact on our health. Cells interact with these nanoparticles via the phospholipid membrane and, in particular, the phosphate head. This highlights the significance of understanding the interaction between phosphates and nanoparticles possessing distinct crystalline structures, specifically anatase and rutile. It is crucial to determine whether this adsorption varies based on the exposed facet(s). Consequently, various nanoparticles of anatase and rutile TiO2, characterized by well-defined morphologies, were synthesized. In the case of the anatase samples, bipyramids, needles, and cubes were obtained. For the rutile samples, all exhibited a needle-like shape, featuring {110} facets along the long direction of the needles and facets {111} on the upper and lower parts. Phosphate adsorption experiments carried out at pH 2 revealed that the maximum adsorption was relatively consistent across all samples, averaging around 1.5 phosphate·nm-2 in all cases. Experiments using infrared spectroscopy on dried TiO2 powders showed that phosphates were chemisorbed on the surfaces and that the mode of adsorption depended on the crystalline phase and the nature of the facet: the anatase phase favors bidentate adsorption more than the rutile crystalline phase.

2.
Anal Chem ; 94(23): 8120-8125, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35648814

RESUMO

The development of instruments combining multiple characterization and imaging tools drove huge advances in material science, engineering, biology, and other related fields. Notably, the coupling of SEM with micro-Raman spectrometry (µRaman) provides the means for the correlation between structural and physicochemical properties at the surface, while dual focused ion beam (FIB)-scanning electron microscopes (SEMs) operating under cryogenic conditions (cryo-FIB-SEM) allow for the analysis of the ultrastructure of materials in situ and in their native environment. In cryo-FIB-SEM, rapid and efficient methods for assessing vitrification conditions in situ are required for the accurate investigation of the original structure of hydrated samples. This work reports for the first time the use of a cryo-FIB-SEM-µRaman instrument to efficiently assess the accuracy of cryo-fixation methods. Analyses were performed on plunge-freezed highly hydrated calcium phosphate cement (CPC) and a gelatin composite. By making a trench of a defined thickness with FIB, µRaman analyses were carried out at a specific depth within the frozen material. Results show that the µRaman signal is sensitive to the changes in the molecular structures of the aqueous phase and can be used to examine the depth of vitreous ice in frozen samples. The method presented in this work provides a reliable way to avoid imaging artifacts in cryo-FIB-SEM that are related to cryo-fixation and therefore constitutes great interest in the study of vitreous materials exhibiting high water content, regardless of the sample preparation method (i.e., by HPF, plunge freezing, and so on).


Assuntos
Criopreservação , Gelo , Microscopia Crioeletrônica/métodos , Congelamento , Água
3.
Phys Chem Chem Phys ; 22(4): 2193-2199, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31912830

RESUMO

Plasmonic core-shell-isolated nanoparticles are promising nanoplatforms for photocatalysis and for low detection analysis. This paper describes the characterization of a 2,2'-bipyridine phosphonate functionalized Ag@TiO2 nanocomposite which complexes copper ions by enhanced Raman spectroscopy and X-ray absorption (XANES and EXAFS). We distinguished Cu(i) from Cu(ii) complexes using shell-isolated nanoparticle enhanced Raman (SHINERS) combined with XAS spectroscopy.

4.
Phys Chem Chem Phys ; 22(41): 24051-24058, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33078785

RESUMO

In the frame of the development of solid ionogel electrolytes with enhanced ion transport properties, this paper investigates ionogel systems constituted by ∼80 wt% of ionic liquids (ILs) confined in meso-/macroporous silica monolith materials. The anion-cation coordination for two closely related ILs, either aprotic (AIL) butylmethylpyrrolidinium or protic (PIL) butylpyrrolidinium, both with bis(trifluoromethylsulfonyl)imide (TFSI) anions, with and without lithium cations, is studied in depth. The ILs are confined within silica with well-defined mesoporosities (8 to 16 nm). The effects of this confinement, onto melting points, onto conductivity followed by impedance spectroscopy, and onto lithium-TFSI coordination followed by Raman spectroscopy, are presented. Opposite effects have been observed on the melting temperature: it increased for the AIL (+2 °C) upon confinement, while it decreased for the PIL (-2 °C). With lithium, the confinement led to an increase of the melting temperature (+1 °C) for the PIL and AIL. Regarding ionic conductivities, a relative maximum was observed at 40 °C for a mesopore diameter of 10 nm for the AIL with 0.5 M lithium, while it was not clearly visible for the PIL. These differences are discussed in view of the charge balance at the interface between silanols and ILs: the presence of a PIL, contrary to an AIL, is expected to modify the acidity of the silica. Raman data showed that the coordination number of lithium by TFSI is reduced upon AIL confinement, although this was not observed for PILs. At last, this work highlights the impact of the acidity of a PIL on the chemistry occurring at the interface of the host network within ionogels.

5.
Inorg Chem ; 58(24): 16322-16325, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31793288

RESUMO

This work highlights for the first time the photoluminescence (PL) properties of two new [Ln(Mo8O26)2]5- (Ln = Eu, Sm) lanthanide-containing polyoxometalates. Stable crystals of their tetrabutylammonium salts were synthesized, and their structures were confirmed by single-crystal X-ray diffraction. The robustness of the [Ln(Mo8O26)2]5- complexes in an acetonitrile solution has been evidenced by Fourier transform Raman and PL spectroscopies. The tetraphenylphosphonium derivatives were obtained by a salt metathesis reaction. The two series exhibit high thermal stability in air and are efficient phosphors at room temperature.

6.
Phys Chem Chem Phys ; 21(6): 3066-3072, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30672929

RESUMO

This paper demonstrates the use of surface plasmon resonance of core-shell Ag@TiO2 particles in SHINERS experiments. A copper(ii) complex grafted onto Ag@TiO2 surface was probed by Raman spectroscopy using resonance excitation profiles vs. excitation wavelengths (514, 633 and 785 nm) to tune the Raman signals. Enhancement factors of the SHINERS assembly have been estimated and compared to the SERS effect of unmodified silver NPs colloidal dispersions. Finally, the grafting of the copper(ii) complex onto Ag@TiO2 was advantageously compared to the grafting onto Ag@SiO2 shell.

7.
Nanomaterials (Basel) ; 13(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37368253

RESUMO

Tricalcium phosphate (TCP) is a food additive, labeled E341(iii), used in powdered food preparation, such as baby formula. In the United States, calcium phosphate nano-objects were identified in baby formula extractions. Our goal is to determine whether the TCP food additive, as is used in Europe, can be classified as a nanomaterial. The physicochemical properties of TCP were characterized. Three different samples (from a chemical company and two manufacturers) were thoroughly characterized according to the recommendations of the European Food Safety Authority. A commercial TCP food additive was identified as actually being hydroxyapatite (HA). It presents itself in the form of particles of different shapes (either needle-like, rod, or pseudo-spherical), which were demonstrated in this paper to be of a nanometric dimension: E341(iii) is thus a nanomaterial. In water, HA particles sediment rapidly as agglomerates or aggregates over a pH of 6 and are progressively dissolved in acidic media (pH < 5) until the complete dissolution at a pH of 2. Consequently, since TCP may be considered as a nanomaterial on the European market, it raises the question of its potential persistency in the gastrointestinal tract.

8.
Inorg Chem ; 50(7): 2811-23, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21355568

RESUMO

In the field of actinide aqueous chemistry, this work aims to resolve some controversy about uranyl(VI) hydroxide species present in basic aqueous solutions. We revisit the Raman, IR, and UV-visible spectra with two new approaches. First, Raman, IR and UV data were recorded systematically from aqueous solutions with the noncomplexing electrolyte (C(2)H(5))(4)NNO(3) at 25 °C and 0.1 MPa ([U(total)] = 0.005-0.105 M) in H(2)O and D(2)O over a wide range of -log mH(D)(+) between 2.92 and 14.50. Second, vibrational spectra (IR and Raman) of basic solutions in H(2)O and D(2)O were analyzed using the Bayesian Positive Source Separation method to estimate pure spectra of individual species. In D(2)O solutions, the new spectroscopic data showed the occurrence of the same species as those in H(2)O. As observed for the wavenumber of the symmetric stretching mode, the wavenumber characteristic of the O═U═O antisymmetric stretching mode decreases as the number of OH(D)(-) ligands increases. These kinds of data, completed by (1) analysis of the signal widths, (2) persistence of the apparent exclusion rule between IR and Raman spectra of the uranyl species stretching modes, and (3) interpretation of the absorption UV-visible spectra, allow discussion of the chemistry, structures, and polynuclearity of uranyl(VI) species. In moderate basic solutions, the presence of two trimers is suggested. In highly basic solutions ([OH(-)] ≈ 3 M), the two monomers UO(2)(OH)(4)(2-) and UO(2)(OH)(5)(3-) are confirmed to be in good agreement with earlier EXAFS and NMR results. The occurrence of the UO(2)(OH)(6)(4-) monomer is also suggested from the more basic solutions investigated.


Assuntos
Compostos de Urânio/química , Hidrólise , Soluções , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Análise Espectral Raman , Água/química
9.
Nanoscale Adv ; 3(23): 6719-6727, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36132650

RESUMO

In line with the approach known as shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), in which Raman signal amplification of analytes is provided by metallic nanoparticles with an ultrathin silica or alumina shell, we report here on a Surface-Enhanced Raman Spectroscopy (SERS) substrate consisting of periodic lines of Ag nanoparticles embedded in dielectric surfaces for enhancing Raman signals. This paper demonstrates the possibility to use these so-called 'PLANEDSERS' substrates as washable and reusable chemical sensors with a good level of repeatability. Large-area Ag nanoparticle arrays are produced by glancing-angle ion-beam sputtering deposition on nanorippled patterns and are protected from the chemical environment (atmospheric or liquid solutions) by a robust and functionalizable thin dielectric layer of alumina or silicon nitride. Our results show that linear assemblies of ellipsoidal nanoparticles (size ∼15 nm) separated by interparticle gaps of approximately 5 nm generate enough near-field intensity enhancement to give rise to significant SERS signals of non-Raman-resonant bipyridine molecules without chemical contact between molecules and Ag nanoparticles. Moreover, the optical dichroic response of these plasmonic assemblies allows for the possibility of tuning the excitation wavelength of the Raman spectra over a wide spectral range. This study is a first step towards designing a substrate-platform without chemical specificity to enhance in equal manner all the weak Raman signals of usual organic molecules and to avoid loss of balance in favour of only one species as usual in SERS experiments. The quantitative detection ranges for bipyridine used as a probe test molecule are around between 10-3 to 10-6 M.

10.
Food Funct ; 12(13): 5975-5988, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34032251

RESUMO

Titanium dioxide is a food additive that has raised some concerns for humans due to the presence of nanoparticles. We were interested in knowing the fate of TiO2 particles in the gastro-intestinal tract and their potential effect on digestive enzymes. For this purpose, we analysed the behaviour of two different food grade TiO2 samples (E171) and one nano-sized TiO2 sample (P25) through a standardized static in vitro digestion protocol simulating the oral, gastric and intestinal phases with appropriate juices including enzymes. Both E171 and P25 TiO2 particles remained intact in the digestive fluids but formed large agglomerates, and especially in the intestinal fluid where up to 500 µm sized particles have been identified. The formation of these agglomerates is mediated by the adsorption of mainly α-amylase and divalent cations. Pepsin was also identified to adsorb onto TiO2 particles but only in the case of silica-covered E171. In the salivary conditions, TiO2 exerted an inhibitory action on the enzymatic activity of α-amylase. The activity was reduced by a factor dependent on enzyme concentrations (up to 34% at 1 mg mL-1) but this inhibitory effect was reduced to hardly 10% in the intestinal fluid. In the gastric phase, pepsin was not affected by any form of TiO2. Our results hint that food grade TiO2 has a limited impact on the global digestion of carbohydrates and proteins. However, the reduced activity specifically observed in the oral phase deserves deeper investigation to prevent any adverse health effects related to the slowdown of carbohydrate metabolism.


Assuntos
Digestão/efeitos dos fármacos , Alimentos , Nanopartículas/química , Titânio/farmacologia , Aditivos Alimentares/química , Fármacos Gastrointestinais , Humanos , Intestinos/efeitos dos fármacos , Nanopartículas Metálicas/química , Tamanho da Partícula
11.
Dalton Trans ; 50(38): 13399-13406, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34473151

RESUMO

With the aim of identifying new cation-phenolate complexes, we herein investigated the reactivity of pyrogallol (H3pgal) with vanadium salts. A trimetallic anionic complex was identified, and found to be formed under a broad set of reaction conditions. This complex, with the formula V3O3(pgal)33-, consists of three oxovanadium(IV) units connected together by three pyrogallate ligands to afford a bowl-shaped species presenting a pseudo 3-fold symmetry axis. Its crystal structure is reported, as well as its characterisation by a broad set of techniques, including powder X-ray diffraction, thermogravimetric analysis, infrared and Raman spectroscopy, and solid state UV-visible diffuse reflectance. Its redox activity both in solution and in the solid state is described, together with its magnetic behavior. Finally, the relevance of this trimetallic unit in the field of phenolic-based biocoatings and Metal Organic Framework (MOF) synthesis is briefly discussed.

12.
ACS Nano ; 15(1): 596-603, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33444504

RESUMO

Above a critical diameter, single- or few-walled carbon nanotubes spontaneously collapse as flattened carbon nanotubes. Raman spectra of isolated flattened and cylindrical carbon nanotubes have been recorded. The collapse provokes an intense and narrow D band, despite the absence of any lattice disorder. The curvature change near the edge cavities activates a D band, despite framework continuity. Theoretical calculations based on Placzek approximation fully corroborate this experimental finding. Usually used as a tool to quantify defect density in graphenic structures, the D band cannot be used as such in the presence of a graphene fold. This conclusion should serve as a basis to revisit materials comprising structural distortion where poor carbon organization was concluded on a Raman basis. Our finding also emphasizes the different visions of a defect between chemists and physicists, a possible source of confusion for researchers working in nanotechnologies.

13.
Appl Spectrosc ; 74(7): 780-790, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32452210

RESUMO

This work introduces hyper-resolution (HyRes), a numerical approach for spatial resolution enhancement that combines hyperspectral unmixing and super-resolution image restoration (SRIR). HyRes yields a substantial increase in spatial resolution of Raman spectroscopy while simultaneously preserving the undistorted spectral information. The resolving power of this technique is demonstrated on Raman spectroscopic data from a polymer nanowire sample. Here, we demonstrate an achieved resolution of better than 14 nm, a more than eightfold improvement on single-channel image-based SRIR and 25× better than regular far-field Raman spectroscopy, and comparable to near-field probing techniques.

14.
Nanomaterials (Basel) ; 10(2)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093023

RESUMO

Environmental degradation of transition metal disulfides (TMDs) is a key stumbling block in a range of applications. We show that a simple one-pot non-covalent pyrene coating process protects TMDs from both photoinduced oxidation and environmental aging. Pyrene is immobilized non-covalently on the basal plane of exfoliated MoS2 and WS2. The optical properties of TMD/pyrene are assessed via electronic absorption and fluorescence emission spectroscopy. High-resolution scanning transmission electron microscopy coupled with electron energy loss spectroscopy confirms extensive pyrene surface coverage, with density functional theory calculations suggesting a strongly bound stable parallel-stacked pyrene coverage of ~2-3 layers on the TMD surfaces. Raman spectroscopy of exfoliated TMDs while irradiating at 0.9 mW/4 µm2 under ambient conditions shows new and strong Raman bands due to oxidized states of Mo and W. Yet remarkably, under the same exposure conditions TMD/pyrene remain unperturbed. The current findings demonstrate that pyrene physisorbed on MoS2 and WS2 acts as an environmental barrier, preventing oxidative surface reactions in the TMDs catalyzed by moisture, air, and assisted by laser irradiation. Raman spectroscopy confirms that the hybrid materials stored under ambient conditions for two years remained structurally unaltered, corroborating the beneficial role of pyrene for not only hindering oxidation but also inhibiting aging.

15.
Nanoscale ; 12(23): 12602-12612, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32501469

RESUMO

Lamellar nanoporous gold thin films, constituted of a stack of very thin layers of porous gold, are synthesized by chemical etching from a stack of successively deposited nanolayers of copper and gold. The gold ligament size, the pore size and the distance between lamellas are tunable in the few tens nanometer range by controlling the initial thickness of the layers and the etching time. The SERS activity of these lamellar porous gold films is characterized by their SERS responses after adsorption of probe bipyridine and naphtalenethiol molecules. The SERS signal is investigated as a function of the bipyridine concentration from 10-14 mol L-1 to 10-3 mol L-1. The higher SERS response corresponds to an experimental detection limit down to 10-12 mol L-1. These performance is mainly attributed to the specific nanoporous gold architecture and the larger accessible surface to volume ratio. The lamellar nanoporous gold substrate is explored for sensitive SERS detection of dimethyl methylphosphonate (DMMP), a surrogate molecule of the highly toxic G-series nerve agents. The resultant nanostructure facilitates the diffusion of target molecules through the nanopores and their localization at the enhancing metallic surface leading to the unequivocal Raman signature of DMMP at a concentration of 5 parts per million.

16.
Artigo em Inglês | MEDLINE | ID: mdl-19167269

RESUMO

Lengths, strengths and valences of OH bonds in the two aluminium hydroxides gibbsite and bayerite were determined on the basis of vibrational spectral data. The uncoupled OD stretching modes in the range 2400-2800cm(-1) were recorded by means of infrared diffuse reflectance, thereby avoiding effects of surface, vibrational coupling or particle shape. The assignment of the corresponding Raman spectra resulted in the determination of harmonic wavenumbers, force constants and anharmonicity coefficients of bulk OH groups in the two minerals. OH bond lengths deduced from these data varied from 0.964A to 0.975A in gibbsite and 0.962A to 0.973A in bayerite. These lengths appear to correspond to weak H-bonds contrary to previously recognized data from X-ray diffraction and neutron diffraction studies. Finally, bond valences were calculated on the basis of these new bond lengths and discussed as a function of crystallographic structures and the nature of hydrogen bonding in these two structures.


Assuntos
Hidróxido de Alumínio/química , Ligação de Hidrogênio , Hidróxidos/química , Minerais/química , Análise Espectral/métodos , Vibração
17.
Materials (Basel) ; 12(9)2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035562

RESUMO

This paper explores the enhancement of Raman signals using individual nano-plasmonic structures and demonstrates the possibility to obtain controlled gold plasmonic nanostructures by atomic force microscopy (AFM) manipulation under a confocal Raman device. By manipulating the gold nanoparticles (Nps) while monitoring them using a confocal microscope, it is possible to generate individual nano- structures, plasmonic molecules not accessible currently by lithography at these nanometer scales. This flexible approach allows us to tune plasmonic resonance of the nanostructures, to generate localized hot spots and to circumvent the effects of strong electric near field gradients intrinsic to Tip Enhanced Raman Spectroscopy (TERS) or Surface Enhanced Raman Spectroscopy (SERS) experiments. The inter Np distances and symmetry of the plasmonic molecules in interaction with other individual nano-objects control the resonance conditions of the assemblies and the enhancement of their Raman responses. This paper shows also how some plasmonic structures generate localized nanometric areas with high electric field magnitude without strong gradient. These last plasmonic molecules may be used as "nano-lenses" tunable in wavelength and able to enhance Raman signals of neighbored nano-object. The positioning of one individual probed nano-object in the spatial area defined by the nano-lens becomes then very non-restrictive, contrary to TERS experiments where the spacing distance between tip and sample is crucial. The experimental flexibility obtained in these approaches is illustrated here by the enhanced Raman scatterings of carbon nanotube.

18.
Appl Spectrosc ; 73(8): 902-909, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30916988

RESUMO

Raman microscopy is a valuable tool for detecting physical and chemical properties of a sample material. When probing nanomaterials or nanocomposites the spatial resolution of Raman microscopy is not always adequate as it is limited by the optical diffraction limit. Numerical post-processing with super-resolution algorithms provides a means to enhance resolution and can be straightforwardly applied. The aim of this work is to present interior point least squares (IPLS) as a powerful tool for super-resolution in Raman imaging through constrained optimization. IPLS's potential for super-resolution is illustrated on numerically generated test images. Its resolving power is demonstrated on Raman spectroscopic data of a polymer nanowire sample. Comparison to atomic force microscopy data of the same sample substantiates that the presented method is a promising technique for analyzing nanomaterial samples.

19.
J Chem Phys ; 129(24): 244704, 2008 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-19123523

RESUMO

The sorption of uranyl cations and water molecules on the basal (001) face of gibbsite was studied by combining vibrational and fluorescence spectroscopies together with density functional theory (DFT) computations. Both the calculated and experimental values of O-H bond lengths for the gibbsite bulk are in good agreement. In the second part, water sorption with this surface was studied to take into account the influence of hydration with respect to the uranyl adsorption. The computed water configurations agreed with previously published molecular dynamics studies. The uranyl adsorption in acidic media was followed by time-resolved laser-induced fluorescence spectroscopy and Raman spectrometry measurements. The existence of only one kind of adsorption site for the uranyl cation was then indicated in good agreement with the DFT calculations. The computation of the uranyl adsorption has been performed by means of a bidentate interaction with two surface oxygen atoms. The optimized structures displayed strong hydrogen bonds between the surface and the -yl oxygen of uranyl. The uranium-surface bond strength depends on the protonation state of the surface oxygen atoms. The calculated U-O(surface) bond lengths range between 2.1-2.2 and 2.6-2.7 A for the nonprotonated and protonated surface O atoms, respectively.


Assuntos
Hidróxido de Alumínio/química , Teoria Quântica , Compostos de Urânio/química , Água/química , Adsorção , Concentração de Íons de Hidrogênio , Hidróxidos/química , Modelos Moleculares , Conformação Molecular , Pressão , Espectrometria de Fluorescência , Análise Espectral Raman , Propriedades de Superfície
20.
Artigo em Inglês | MEDLINE | ID: mdl-29052468

RESUMO

Titanium dioxide is a metal oxide used as a white pigment in many food categories, including confectionery. Due to differences in the mass fraction of nanoparticles contained in TiO2, the estimated intakes of TiO2 nanoparticles differ by a factor of 10 in the literature. To resolve this problem, a better estimation of the mass of nanoparticles present in food products is needed. In this study, we focused our efforts on chewing gum, which is one of the food products contributing most to the intake of TiO2. The coatings of four kinds of chewing gum, where the presence of TiO2 was confirmed by Raman spectroscopy, were extracted in aqueous phases. The extracts were analysed by transmission electron microscopy (TEM), X-ray diffraction, Fourier Transform Raman spectroscopy, and inductively coupled plasma atomic emission spectroscopy (ICP-AES) to establish their chemical composition, crystallinity and size distribution. The coatings of the four chewing gums differ chemically from each other, and more specifically the amount of TiO2 varies from one coating to another. TiO2 particles constitute the entire coating of some chewing gums, whereas for others, TiO2 particles are embedded in an organic matrix and/or mixed with minerals like calcium carbonate, talc, or magnesium silicate. We found 1.1 ± 0.3 to 17.3 ± 0.9 mg TiO2 particles per piece of chewing gum, with a mean diameter of 135 ± 42 nm. TiO2 nanoparticles account for 19 ± 4% of all particles, which represents a mass fraction of 4.2 ± 0.1% on average. The intake of nanoparticles is thus highly dependent on the kind of chewing gum, with an estimated range extending from 0.04 ± 0.01 to 0.81 ± 0.04 mg of nano-TiO2 per piece of chewing gum. These data should serve to refine the exposure scenario.


Assuntos
Goma de Mascar/análise , Aditivos Alimentares/análise , Nanopartículas/análise , Titânio/análise , Espectrofotometria Atômica , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa