RESUMO
High efficiency white light-emitting diodes with superior color-mixing have been investigated. It is suggested that the patterned remote phosphor structure could improve the uniformity of angular-dependent correlated color temperature (CCT) and achieve high chromatic stability in wider operating current range, as compared to the conventional remote phosphor coating structure. In this experiment, we employed a pulse spray coating method to place the patterned phosphor on the package and to leave a window region. The window area, a clear space without coating of the phosphor not only increases the extraction efficiency of blue rays at large angle, but also improves the stability of angular-dependent CCT. Moreover, the CCT deviation could be reduced from 1320 K to 266 K by this patterned remote phosphor method, and the stray blue/yellow light within the package can be effectively reduced and controlled. The design was verified both experimentally and theoretically.
RESUMO
An electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT)/screen-printed reduced graphene oxide (rGO)-chitosan (CS) bilayer material was coated on carbon cloth to form electrodes for gel-electrolyte flexible supercapacitors. The conductive polymer and carbon-based materials mainly contribute pseudocapacitance (PC) and electrical double-layer capacitance (EDLC), respectively. The high porosity and hydrophilicity of the PEDOT/rGO-CS bilayer material offers a large contact area and improves the contact quality for the gel electrolyte, thereby enhancing the capacitive performance. Cyclic voltammetry (CV) under a potential scan rate of 2 mV/s revealed that a maximum areal capacitance of 1073.67 mF/cm2 was achieved. The capacitance contribution ratio PC/EDLC was evaluated to be â¼67/33 by the Trasatti method. A 10,000-cycle CV test showed a capacitance retention rate of 99.3% under a potential scan rate of 200 mV/s, indicating good stability. The areal capacitance remains similar under bending with a bending curvature of up to 1.5 cm-1.
RESUMO
Reduced graphene oxide (rGO) and/or polypyrrole (PPy) are mixed with chitosan (CS) binder materials for screen-printing supercapacitors (SCs) on arc atmospheric-pressure plasma jet (APPJ)-treated carbon cloth. The performance of gel-electrolyte rGO/CS, PPy/CS, and rGO/PPy/CS SCs processed by a dielectric barrier discharge plasma jet (DBDjet) was assessed and compared. DBDjet processing improved the hydrophilicity of these three nanocomposite electrode materials. Electrochemical measurements including electrical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charging-discharging (GCD) were used to evaluate the performance of the three types of SCs. The Trasatti method was used to evaluate the electric-double layer capacitance (EDLC) and pseudocapacitance (PC) of the capacitance. The energy and power density of the three types of SCs were illustrated and compared using Ragone plots. Our experiments verify that, with the same weight of active materials, the combined use of rGO and PPy in SCs can significantly increase the capacitance and improve the operation stability.