Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38743471

RESUMO

Rhizobia are bacteria that form nitrogen-fixing nodules in legume plants. The sets of genes responsible for both nodulation and nitrogen fixation are carried in plasmids or genomic islands that are often mobile. Different strains within a species sometimes have different host specificities, while very similar symbiosis genes may be found in strains of different species. These specificity variants are known as symbiovars, and many of them have been given names, but there are no established guidelines for defining or naming them. Here, we discuss the requirements for guidelines to describe symbiovars, propose a set of guidelines, provide a list of all symbiovars for which descriptions have been published so far, and offer a mechanism to maintain a list in the future.


Assuntos
Rhizobium , Simbiose , Fabaceae/microbiologia , Guias como Assunto , Fixação de Nitrogênio , Rhizobium/genética , Rhizobium/classificação , Nódulos Radiculares de Plantas/microbiologia
2.
Curr Microbiol ; 81(8): 247, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951210

RESUMO

Stenotrophomonas species are recognized as rhizobacteria that play a pivotal role in promoting plant growth by making substantial contributions to enhanced soil fertility, nutrient recycling, and phytopathogen control. Employing them as bioinputs constitutes an environmentally sound strategy, particularly within the rhizospheric community. This study revealed the draft genome sequence of Stenotrophomonas geniculata LGMB417, which was originally isolated from root samples of maize (Zea mays L.). This research assessed the potential of a bacterial strain at the molecular level through genome mining, aiming to identify genes with biotechnological significance for promoting plant growth and protection. The assembly findings indicate that strain LGMB417 possesses a genome size of 4,654,011 bp, with a G + C content of 66.50%. The draft genome sequence revealed the presence of gene clusters responsible for the synthesis of secondary metabolites and carbohydrate active enzymes (CAZymes), glycoside hydrolases (23), glycosyltransferases (18), carbohydrate esterases (5), polysaccharide lyases (2), carbohydrate-binding modules (2), and auxiliary activities (1). Several genes related to growth promotion were found in the genome, including those associated with phosphate transport and solubilization, nitrogen metabolism, siderophore production and iron transport, hormonal modulation, stress responses (such as to drought, temperature fluctuations, osmotic challenges, and oxidative conditions), and volatile organic compounds (VOCs). Subsequent phases will encompass investigations utilizing gene expression methodologies, with future explorations concentrating on facets pertinent to agricultural production, including comprehensive field studies.


Assuntos
Genoma Bacteriano , Stenotrophomonas , Zea mays , Zea mays/microbiologia , Stenotrophomonas/genética , Stenotrophomonas/metabolismo , Biotecnologia , Composição de Bases , Raízes de Plantas/microbiologia , Microbiologia do Solo , Agricultura , Filogenia , Família Multigênica
3.
Arch Microbiol ; 205(9): 325, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37659972

RESUMO

Common bean is considered a legume of great socioeconomic importance, capable of establishing symbioses with a wide variety of rhizobial species. However, the legume has also been recognized for its low efficiency in fixing atmospheric nitrogen. Brazil is a hotspot of biodiversity, and in a previous study, we identified 13 strains isolated from common bean (Phaseolus vulgaris) nodules in three biomes of Mato Grosso do Sul state, central-western Brazil, that might represent new phylogenetic groups, deserving further polyphasic characterization. The phylogenetic tree of the 16S rRNA gene split the 13 strains into two large clades, seven in the R. etli and six in the R. tropici clade. The MLSA with four housekeeping genes (glnII, gyrB, recA, and rpoA) confirmed the phylogenetic allocation. Genomic comparisons indicated eight strains in five putative new species and the remaining five as R. phaseoli. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) comparing the putative new species and the closest neighbors ranged from 81.84 to 92.50% and 24.0 to 50.7%, respectively. Other phenotypic, genotypic, and symbiotic features were evaluated. Interestingly, some strains of both R. etli and R. tropici clades lost their nodulation capacity. The data support the description of the new species Rhizobium cerradonense sp. nov. (CNPSo 3464T), Rhizobium atlanticum sp. nov. (CNPSo 3490T), Rhizobium aureum sp. nov. (CNPSo 3968T), Rhizobium pantanalense sp. nov. (CNPSo 4039T), and Rhizobium centroccidentale sp. nov. (CNPSo 4062T).


Assuntos
Phaseolus , Rhizobium , Brasil , Rhizobium/genética , Filogenia , RNA Ribossômico 16S/genética , Verduras , DNA
4.
BMC Microbiol ; 22(1): 122, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513812

RESUMO

BACKGROUND: Bradyrhizobium japonicum strain SEMIA 5079 (= CPAC 15) is a nitrogen-fixing symbiont of soybean broadly used in commercial inoculants in Brazil. Its genome has about 50% of hypothetical (HP) protein-coding genes, many in the symbiosis island, raising questions about their putative role on the biological nitrogen fixation (BNF) process. This study aimed to infer functional roles to 15 HP genes localized in the symbiosis island of SEMIA 5079, and to analyze their expression in the presence of a nod-gene inducer. RESULTS: A workflow of bioinformatics tools/databases was established and allowed the functional annotation of the HP genes. Most were enzymes, including transferases in the biosynthetic pathways of cobalamin, amino acids and secondary metabolites that may help in saprophytic ability and stress tolerance, and hydrolases, that may be important for competitiveness, plant infection, and stress tolerance. Putative roles for other enzymes and transporters identified are discussed. Some HP proteins were specific to the genus Bradyrhizobium, others to specific host legumes, and the analysis of orthologues helped to predict roles in BNF. CONCLUSIONS: All 15 HP genes were induced by genistein and high induction was confirmed in five of them, suggesting major roles in the BNF process.


Assuntos
Bradyrhizobium , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Genisteína/metabolismo , Genisteína/farmacologia , Ilhas Genômicas , Fixação de Nitrogênio/genética , Glycine max/genética , Simbiose/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-35796350

RESUMO

Bradyrhizobium is a heterogeneous bacterial genus capable of establishing symbiotic associations with a broad range of legume hosts, including species of economic and environmental importance. This study was focused on the taxonomic and symbiovar definition of four strains - CNPSo 4026T, WSM 1704T, WSM 1738T and WSM 4400T - previously isolated from nodules of legumes in Western Australia and South Africa. The 16S rRNA gene phylogenetic tree allocated the strains to the Bradyrhizobium elkanii supergroup. The multilocus sequence analysis (MLSA) with partial sequences of six housekeeping genes - atpD, dnaK, glnII, gyrB, recA and rpoB - did not cluster the strains under study as conspecific to any described Bradyrhizobium species. Average nucleotide identity and digital DNA-DNA hybridization values were calculated for the four strains of this study and the closest species according to the MLSA phylogeny with the highest values being 95.46 and 62.20 %, respectively; therefore, both being lower than the species delineation cut-off values. The nodC and nifH phylogenies included strains WSM 1738T and WSM 4400T in the symbiovars retamae and vignae respectively, and also allowed the definition of three new symbiovars, sv. cenepequi, sv. glycinis, and sv. cajani. Analysis of morphophysiological characterization reinforced the identification of four novel proposed Bradyrhizobium species that are accordingly named as follows: Bradyrhizobium cenepequi sp. nov. (CNPSo 4026T=WSM 4798T=LMG 31653T), isolated from Vigna unguiculata; Bradyrhizobium semiaridum sp. nov. (WSM 1704T=CNPSo 4028T=LMG 31654T), isolated from Tephrosia gardneri; Bradyrhizobium hereditatis sp. nov. (WSM 1738T=CNPSo 4025T=LMG 31652T), isolated from Indigofera sp.; and Bradyrhizobium australafricanum sp. nov. (WSM 4400T=CNPSo 4015T=LMG 31648T) isolated from Glycine sp.


Assuntos
Bradyrhizobium , Fabaceae , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Fabaceae/microbiologia , Ácidos Graxos/química , Genes Bacterianos , Filogenia , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , África do Sul , Verduras , Austrália Ocidental
6.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36233333

RESUMO

Biological nitrogen fixation (BNF) is a key process for the N input in agriculture, with outstanding economic and environmental benefits from the replacement of chemical fertilizers. However, not all symbioses are equally effective in fixing N2, and a major example relies on the high contribution associated with the soybean (Glycine max), contrasting with the low rates reported with the common bean (Phaseolus vulgaris) crop worldwide. Understanding these differences represents a major challenge that can help to design strategies to increase the contribution of BNF, and next-generation sequencing (NGS) analyses of the nodule and root microbiomes may bring new insights to explain differential symbiotic performances. In this study, three treatments evaluated in non-sterile soil conditions were investigated in both legumes: (i) non-inoculated control; (ii) inoculated with host-compatible rhizobia; and (iii) co-inoculated with host-compatible rhizobia and Azospirillum brasilense. In the more efficient and specific symbiosis with soybean, Bradyrhizobium presented a high abundance in nodules, with further increases with inoculation. Contrarily, the abundance of the main Rhizobium symbiont was lower in common bean nodules and did not increase with inoculation, which may explain the often-reported lack of response of this legume to inoculation with elite strains. Co-inoculation with Azospirillum decreased the abundance of the host-compatible rhizobia in nodules, probably because of competitiveness among the species at the rhizosphere, but increased in root microbiomes. The results showed that several other bacteria compose the nodule microbiomes of both legumes, including nitrogen-fixing, growth-promoters, and biocontrol agents, whose contribution to plant growth deserves further investigation. Several genera of bacteria were detected in root microbiomes, and this microbial community might contribute to plant growth through a variety of microbial processes. However, massive inoculation with elite strains should be better investigated, as it may affect the root microbiome, verified by both relative abundance and diversity indices, that might impact the contribution of microbial processes to plant growth.


Assuntos
Microbiota , Phaseolus , Rhizobium , Fertilizantes , Nitrogênio , Fixação de Nitrogênio , Phaseolus/microbiologia , Raízes de Plantas/microbiologia , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Solo , Glycine max/microbiologia , Simbiose
7.
Arch Microbiol ; 203(8): 4785-4803, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34245357

RESUMO

Twenty years ago, the first members of the genus Burkholderia capable of nodulating and fixing N2 during symbiosis with leguminous plants were reported. The discovery that ß-proteobacteria could nodulate legumes represented a breakthrough event because, for over 100 years, it was thought that all rhizobia belonged exclusively to the α-Proteobacteria class. Over the past 20 years, efforts toward robust characterization of these bacteria with large-scale phylogenomic and taxonomic studies have led to the separation of clinically important and phytopathogenic members of Burkholderia from environmental ones, and the symbiotic nodulating species are now included in the genera Paraburkholderia and Trinickia. Paraburkholderia encompasses the vast majority of ß-rhizobia and has been mostly found in South America and South Africa, presenting greater symbiotic affinity with native members of the families Mimosoideae and Papilionoideae, respectively. Being the main center of Mimosa spp. diversity, Brazil is also known as the center of symbiotic Paraburkholderia diversity. Of the 21 symbiotic Paraburkholderia species described to date, 11 have been isolated in Brazil, and others first isolated in different countries have also been found in this country. Additionally, besides the symbiotic N2-fixation capacity of some of its members, Paraburkholderia is considered rich in other beneficial interactions with plants and can promote growth through several direct and indirect mechanisms. Therefore, these bacteria can be considered biological resources employed as environmentally friendly alternatives that could reduce the agricultural dependence on agrochemical inputs.


Assuntos
Fabaceae , Mimosa , Rhizobium , Brasil , Humanos , Fixação de Nitrogênio , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/genética , Análise de Sequência de DNA , Simbiose
8.
Arch Microbiol ; 203(9): 5533-5545, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34427725

RESUMO

Symbiotic Paraburkholderia have been increasingly studied in the past 20 years, especially when associated with Mimosa; however, studies with native/endemic species are still scarce. In this study, thirty strains were isolated from root nodules of native Mimosa paranapiacabae and M. micropteris in two locations of the Campos Gerais. The BOX-PCR fingerprinting revealed high genomic diversity, and the 16S rRNA phylogeny clustered the strains in three distinct groups (GI, GII, GIII), with one strain occupying an isolated position. Phylogenetic analysis with four concatenated housekeeping genes (atpD + gltB + gyrB + recA) confirmed the same clusters of 16S rRNA, and the closest species were P. nodosa BR 3437T and P. guartelaensis CNPSo 3008T; this last one isolated from another Mimosa species of the Campos Gerais. The phylogenies of the symbiotic genes nodAC and nifH placed all strains in a well-supported branch with the other species of the symbiovar mimosae. The phylogenetic analyses indicated that the strains represent novel lineages of sv. mimosae and that endemic Mimosa coevolved with indigenous Paraburkholderia in their natural environments.


Assuntos
Mimosa , Rhizobium , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/genética , Nódulos Radiculares de Plantas , Análise de Sequência de DNA , Simbiose
9.
Arch Microbiol ; 202(9): 2579-2590, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32681431

RESUMO

The effects of sole inoculation of soybean (Glycine max L. Merrill) with Bradyrhizobium and co-inoculation with Bradyrhizobium and Azospirillum on nodulation, plant growth and yields were investigated in the 2013/2014 and 2014/2015 cropping seasons under field conditions in Mozambique. The treatments included (1) Control (non-inoculated control, with symbiosis depending on indigenous rhizobia), (2) Urea (non-inoculated, receiving 200 kg ha-1 of N), (3) Sole inoculation with B. diazoefficiens strain USDA 110, and (4) Co-inoculation with B. diazoefficiens strain USDA 110 and A. brasilense strains Ab-V5 and Ab-V6, evaluated in a randomized complete block design with five replications. Nodule number and dry weight, shoot dry weight, biological and grain yields, grain dry weight, and harvest index were evaluated. In general, both sole inoculation and co-inoculation enhanced nodulation in relation to control. Sole inoculation increased grain yield by 22% (356 kg ha-1), the same enhancement magnitude attained under mineral N treatment, suggesting that Bradyrhizobium inoculation provides ecological and economic sustainability to the soybean crop in Mozambique or other countries with similar agro-climatic conditions. Co-inoculation did not increase grain yields in relation to neither the control nor sole inoculation, indicating that further research with adapted and high yielding soybean varieties along with effective rhizobial strains is required in Mozambique to attune the beneficial Azospirillum-plant cultivar-rhizobia interactions that have been reported in other countries for several legumes, including soybean.


Assuntos
Agricultura/métodos , Azospirillum/fisiologia , Bradyrhizobium/fisiologia , Glycine max/microbiologia , Moçambique , Desenvolvimento Vegetal , Glycine max/crescimento & desenvolvimento , Simbiose
10.
Arch Microbiol ; 202(6): 1369-1380, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32166359

RESUMO

A polyphasic study was conducted with 11 strains trapped by Mimosa pudica and Phaseolus vulgaris grown in soils of the Brazilian Atlantic Forest. In the phylogenetic analysis of the 16S rRNA gene, one clade of strains (Psp1) showed higher similarity with Paraburkholderia piptadeniae STM7183T (99.6%), whereas the second (Psp6) was closely related to Paraburkholderia tuberum STM678T (99%). An MLSA (multilocus sequence analysis) with four (recA, gyrB, trpB and gltB) housekeeping genes placed both Psp1 and Psp6 strains in new clades, and BOX-PCR profiles indicated high intraspecific genetic diversity within each clade. Values of digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) of the whole genome sequences were of 56.9 and 94.4% between the Psp1 strain CNPSo 3157T and P. piptadeniae; and of 49.7% and 92.7% between the Psp6 strain CNPSo 3155T and P. tuberum, below the threshold for species delimitation. In the nodC analysis, Psp1 strains clustered together with P. piptadeniae, while Psp6 did not group with any symbiotic Paraburkholderia. Other phenotypic, genotypic and symbiotic properties were evaluated. The polyphasic analysis supports that the strains represent two novel species, for which the names Paraburkholderia franconis sp. nov. with type strain CNPSo 3157T (= ABIP 241, = LMG 31644) and Paraburkholderia atlantica sp. nov. with type strain CNPSo 3155T (= ABIP 236, = LMG 31643) are proposed.


Assuntos
Burkholderiaceae/classificação , Burkholderiaceae/isolamento & purificação , Mimosa/microbiologia , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Phaseolus/microbiologia , Composição de Bases/genética , Brasil , Burkholderiaceae/genética , DNA Bacteriano/genética , Florestas , Genes Essenciais/genética , Tipagem de Sequências Multilocus , Nitrogênio , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo
11.
Int J Syst Evol Microbiol ; 70(7): 4233-4244, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32568030

RESUMO

Agrobacterium strains are associated with soil, plants and animals, and known mainly by their pathogenicity. We studied 14 strains isolated from nodules of healthy soybean and common bean plants in Brazil, Mexico, Ecuador and Mozambique. Sequence analysis of the 16S rRNA gene positioned the strains as Agrobacterium, but with low phylogenetic resolution. Multilocus sequence analysis (MLSA) of three partial housekeeping genes (glnII, gyrB and recA) positioned the strains in four distinct clades, with Agrobacterium pusense, Agrobacterium deltaense, Agrobacterium radiobacter and Agrobacterium sp. genomospecies G1. Analysis by BOX-PCR revealed high intraspecies diversity. Genomic analysis of representative strains of the three clades indicated that they carry the protelomerase telA gene, and MLSA analysis with six complete housekeeping genes (atpD, glnII, gyrB, recA, rpoB and thrC), as well as average nucleotide identity (less than 90 % with closest species) and digital DNA-DNA hybridization (less than 41 % with closest species) revealed that strain CNPSo 675T and Agrobacterium sp. genomospecies G1 compose a new species. Other phenotypic and genotypic characteristics were determined for the new clade. Although not able to re-nodulate the host, we hypothesize that several strains of Agrobacterium are endophytes in legume nodules, where they might contribute to plant growth. Our data support the description of the CNPSo 675T and Agrobacterium sp. genomospecies G1 strains as a new species, for which the name Agrobacterium fabacearum is proposed. The type strain is CNPSo 675T (=UMR 1457T=LMG 31642T) and is also deposited in other culture collections.


Assuntos
Agrobacterium/classificação , Glycine max/microbiologia , Phaseolus/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Agrobacterium/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Brasil , DNA Bacteriano/genética , Equador , Genes Bacterianos , México , Moçambique , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Int J Syst Evol Microbiol ; 70(8): 4623-4636, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32667875

RESUMO

The genus Bradyrhizobium is considered as the probable ancestor lineage of all rhizobia, broadly spread in a variety of ecosystems and with remarkable diversity. A polyphasic study was performed to characterize and clarify the taxonomic position of eight bradyrhizobial strains isolated from indigenous legumes to Western Australia. As expected for the genus, the 16S rRNA gene sequences were highly conserved, but the results of multilocus sequence analysis with four housekeeping genes (dnaK, glnII, gyrB and recA) confirmed three new distinct clades including the following strains: (1) WSM 1744T, WSM 1736 and WSM 1737; (2) WSM 1791T and WSM 1742; and (3) WSM 1741T, WSM 1735 and WSM 1790. The highest ANI values of the three groups in relation to the closest type strains were 92.4, 92.3 and 93.3 %, respectively, below the threshold of species circumscription. The digital DNA-DNA hybridization analysis also confirmed new species descriptions, with less than 52 % relatedness with the closest type strains. The phylogeny of the symbiotic gene nodC clustered the eight strains into the symbiovar retamae, together with seven Bradyrhizobium type strains, sharing from 94.2-98.1 % nucleotide identity (NI), and less than 88.7 % NI with other related strains and symbiovars. Morpho-physiological, phylogenetics, genomic and symbiotic traits were determined for the new groups and our data support the description of three new species, Bradyrhizobium archetypum sp. nov., Bradyrhizobium australiense sp. nov. and Bradyrhizobium murdochi sp. nov., with WSM 1744T (=CNPSo 4013T=LMG 31646T), WSM 1791T (=CNPSo 4014T=LMG 31647T) and WSM 1741T (=CNPSo 4020T=LMG 31651T) designated as type strains, respectively.


Assuntos
Bradyrhizobium/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobium/isolamento & purificação , DNA Bacteriano/genética , Genes Bacterianos , Tipagem de Sequências Multilocus , Fixação de Nitrogênio , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Austrália Ocidental
13.
Antonie Van Leeuwenhoek ; 113(5): 687-696, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31900709

RESUMO

Hydrogen-uptake (Hup) activity is implicated in the mitigation of energy losses associated with the biological nitrogen fixation process, and has been related to productivity increases in some legume hosts. However, in common bean (Phaseolus vulgaris L.) the expression of hydrogenase is rare. In this study an 18-kb hup gene cluster from Rhizobium leguminosarum bv. viciae encoding a NiFe hydrogenase was successfully transferred to three common bean rhizobial strains lacking hydrogenase activity (Hup-) but symbiotically very effective and used in commercial inoculants in Brazil: one strain originally from Colombia (Rhizobium tropici CIAT 899), and two strains from Brazil (R. tropici H 12 and Rhizobium freirei PRF 81). The inclusion of NiCl2 in the nutrient solution did not increase hydrogenase activity, indicating that common bean plants allow efficient nickel provision for hydrogenase synthesis in the bacteroids. The symbiotic performance-evaluated by nodulation, plant growth, N accumulation and seed production-of wild-type and Hup+ derivative strains was compared in experiments performed with cultivar Carioca under greenhouse conditions, in sterile substrate and in non-sterile soil. Statistically significant increases in one or more parameters were observed for all three Hup+ derivatives when compared to the respective wild-type strain. Differences were found mainly with the Brazilian strains, reaching impressive increases in nodule efficiency and seed total N content. The results highlight the potential of using Rhizobium Hup+ strains for the design of more energy-efficient inoculants for the common bean crop.


Assuntos
Hidrogenase/genética , Phaseolus , Plantas Geneticamente Modificadas , Rhizobium/genética , Proteínas de Bactérias/genética , Brasil , Genes Bacterianos , Hidrogênio/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Phaseolus/crescimento & desenvolvimento , Phaseolus/metabolismo , Phaseolus/microbiologia , Nódulos Radiculares de Plantas/genética , Simbiose/genética
14.
World J Microbiol Biotechnol ; 36(11): 172, 2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33068168

RESUMO

Soybean [Glycine max (L.) Merr.] has great economic and nutritional importance mainly due to its high protein content. All plant's N needs can be met by the symbiosis with elite Bradyrhizobium strains applied as inoculants to the seeds at sowing time; however, the increasing use of pesticides in seed treatments can impair the contribution of the biological nitrogen fixation. In this study, we report decreases in cell survival of two strains, B. japonicum SEMIA 5079 and B. elkanii SEMIA 587 in seeds inoculated and treated with StandakTop™, composed of the fungicides pyraclostrobin and thiophanate-methyl and the insecticide fipronil, the pesticides most used in soybean seed treatment in several countries. Cell death was enhanced with the time of exposure to the pesticides, and B. elkanii was less tolerant, with almost no detectable viable cells after 15 days. Change in colony morphology with smaller colonies was observed in the presence of the pesticides, being more drastic with the time of exposure, and attributed to an adaptive response towards survival in the presence of the abiotic stress. However, morphological changes were reversible after elimination of the stressing agent and symbiotic performance under controlled greenhouse conditions was similar between strains that had been or not exposed to the pesticides. In addition, no changes in DNA profiles (BOX-PCR) of both strains were observed after the contact with the pesticides. In two field experiments, impacting effects of the pesticides were observed mainly on the total N accumulated in grains of plants relying on both N2-fixation and N-fertilizer. Our data indicate that StandakTop® affects parameters never reported before, including colony morphology of Bradyrhizobium spp. and N metabolism and/or N remobilization to soybean grains.


Assuntos
Bradyrhizobium/crescimento & desenvolvimento , Glycine max/microbiologia , Praguicidas/efeitos adversos , Bradyrhizobium/efeitos dos fármacos , Bradyrhizobium/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Nitrogênio/metabolismo , Fixação de Nitrogênio/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Simbiose
15.
Microbiology (Reading) ; 165(9): 990-1000, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31184576

RESUMO

Rhizobium tropici strain CIAT 899 possesses outstanding agronomic properties as it displays tolerance to environmental stresses, a broad host range and high effectiveness in fixing nitrogen with the common bean (Phaseolus vulgaris L.); in addition, it carries intriguing features such as five copies of the regulatory nodD gene, and the capacity to synthesize a variety of nodulation factors (NFs), even in a flavonoid-independent manner, when submitted to abiotic stresses. However, the roles of several nod genes of the repertoire of CIAT 899 remain to be determined. In this study, we obtained mutants for the hsnT, nodF and nodE genes of CIAT 899 and investigated their expression, NF structures and symbiotic properties. Either in the presence of the flavonoid apigenin, or of salt the expression of hsnT, nodF and nodE in wild-type CIAT 899 was highly up-regulated in comparison to the mutants of all five copies of nodD, indicating the roles that regulatory nodD genes play in the activation of hsnT, nodF and nodE; however, NodD1 was recognized as the main inducer. In total, 29 different NF structures were synthesized by wild-type CIAT 899 induced by apigenin, and 36 when induced by salt, being drastically reduced by mutations in hsnT, nodF and nodE, especially under osmotic stress, with specific changes related to each gene, indicating that the three genes participate in the synthesis of NFs. Mutations in hsnT, nodF and nodE affected differently symbiotic performance (nodule number and shoot dry weight), according to the host plant. Our results indicate that the expression of hsnT, nodF and nodE genes of CIAT 899 is mediated by nodD genes, and although these three genes do not belong to the main set of genes controlling nodulation, they contribute to the synthesis of NFs that will impact symbiotic performance and host specificity.


Assuntos
Proteínas de Bactérias/genética , Nodulação/genética , Rhizobium tropici/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Fixação de Nitrogênio/fisiologia , Phaseolus/microbiologia , Simbiose/genética
16.
BMC Microbiol ; 19(1): 174, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31362706

RESUMO

BACKGROUND: Food-producing animals, mainly poultry, have been associated with the maintenance and dissemination of antibiotic-resistant bacteria, such as plasmid-mediated AmpC (pAmpC)-producing Enterobacteriaceae, to humans, thus impacting food safety. Many studies have shown that Escherichia coli strains isolated from poultry and humans infections share identical cephalosporin resistance, suggesting that transmission of resistance from poultry meat to humans may occur. The aim of this study was to characterize pAmpC-producing E. coli strains isolated from chicken carcasses and human infection in a restrict area and to determine their antimicrobial resistance profiles, and molecular type by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). RESULTS: A total of 14 pAmpC-producing E. coli strains were isolated, including eight strains from chicken carcasses and six strains from human infections (from urine, tissue and secretion). The blaCMY-2 gene was identified in all pAmpC-producing E. coli strains by polymerase chain reaction (PCR) and DNA sequencing. High percentages of strains resistant to tetracycline, nalidixic acid and sulfamethoxazole-trimethoprim (78-92%) were detected, all of which were considered multidrug-resistant. Among the non-beta-lactam resistance genes, the majority of the strains showed tetA, tetB, sulI and sulII. No strain was considered an extended-spectrum beta-lactamases (ESBL) producer, and the blaTEM-1 gene was found in 2 strains isolated from human infection. Six strains from chicken carcasses and four strains from humans infections were linked to an ISEcp1-like element. Through MLST, 11 sequence types were found. Three strains isolated from human infection and one strain isolated from chicken carcasses belonged to the same sequence type (ST354). However, considerable heterogeneity between the strains from chicken carcasses and humans was confirmed by PFGE analysis. CONCLUSION: This study showed the prevalence of E. coli strains producing blaCMY-2 linked to ISEcp1 that were present in both chickens and humans in a restricted area. Our results also suggest the presence of a highly diverse strains that harbor pAmpC, indicating no clonal dissemination. Therefore, continuous monitoring and comparative analyses of resistant bacteria from humans and food-producing animals are needed.


Assuntos
Resistência às Cefalosporinas/genética , Galinhas/microbiologia , Farmacorresistência Bacteriana/genética , beta-Lactamases/genética , Animais , Brasil , Eletroforese em Gel de Campo Pulsado , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Microbiologia de Alimentos , Genes Bacterianos , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Plasmídeos , Aves Domésticas/microbiologia , Zoonoses
17.
Arch Microbiol ; 201(2): 171-183, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30535938

RESUMO

Rhizobium tropici CIAT 899 is a strain known by its ability to nodulate a broad range of legume species, to synthesize a variety of Nod factors, its tolerance of abiotic stresses, and its high capacity to fix atmospheric N2, especially in symbiosis with common bean (Phaseolus vulgaris L.). Genes putatively related to the synthesis of indole acetic acid (IAA) have been found in the symbiotic plasmid of CIAT 899, in the vicinity of the regulatory nodulation gene nodD5, and, in this study, we obtained mutants for two of these genes, y4wF and tidC (R. tropiciindole-3-pyruvic acid decarboxylase), and investigated their expression in the absence and presence of tryptophan (TRP) and apigenin (API). In general, mutations of both genes increased exopolysaccharide (EPS) synthesis and did not affect swimming or surface motility; mutations also delayed nodule formation, but increased competitiveness. We found that the indole-3-acetamide (IAM) pathway was active in CIAT 899 and not affected by the mutations, and-noteworthy-that API was required to activate the tryptamine (TAM) and the indol-3-pyruvic acid (IPyA) pathways in all strains, particularly in the mutants. High up-regulation of y4wF and tidC genes was observed in both the wild-type and the mutant strains in the presence of API. The results obtained revealed an intriguing relationship between IAA metabolism and nod-gene-inducing activity in R. tropici CIAT 899. We discuss the IAA pathways, and, based on our results, we attribute functions to the y4wF and tidC genes of R. tropici.


Assuntos
Carboxiliases/metabolismo , Ácidos Indolacéticos/metabolismo , Rhizobium tropici/genética , Rhizobium tropici/metabolismo , Carboxiliases/genética , Genes Bacterianos , Indóis/metabolismo , Mutação , Phaseolus/microbiologia , Phaseolus/fisiologia , Polissacarídeos Bacterianos/biossíntese , Rhizobium tropici/química , Rhizobium tropici/enzimologia , Simbiose
18.
Arch Microbiol ; 201(10): 1435-1446, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31428824

RESUMO

A polyphasic approach was used to infer the phylogenetic position of six nitrogen-fixing symbiotic bacteria isolated from Mimosa gymnas nodules grown in an ecotone between the Brazilian biomes of Atlantic Forest and Cerrado, considered as a hotspot of biodiversity. The 16S rRNA gene phylogeny indicated the highest similarity with Paraburkholderia oxyphila (98.7-98.9%), but similar values were found with other Paraburkholderia species. The multilocus sequence analysis (MLSA) of five (recA, gyrB, trpB, gltB, and atpD) housekeeping genes indicated that the CNPSo strains represent a novel lineage, sharing less than 95.7% of nucleotide identity (NI) with other Paraburkholderia species, being more closely related to P. nodosa. Genome parameters were analyzed for strain CNPSo 3008T, and DNA-DNA hybridization revealed a maximum of 55.9% of DNA-DNA relatedness with P. nodosa, while average nucleotide identity with the two closest species was of 93.84% with P. nodosa and of 87.93% with P. mimosarum, both parameters confirming that the strain represents a new species. In the analysis of the nodulation nodC gene, all CNPSo strains showed the highest similarity with P. nodosa, and nodulation tests indicated host specificity with Mimosa. Other phylogenetic, physiological, and chemotaxonomic properties were evaluated. All data obtained support the description of the novel species Paraburkholderia guartelaensis sp. nov., with CNPSo 3008T (= U13000T = G29.01T) indicated as the type strain.


Assuntos
Burkholderiaceae/classificação , Mimosa/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Composição de Bases , Brasil , Burkholderiaceae/genética , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , Genes Bacterianos/genética , Tipagem de Sequências Multilocus , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
19.
Artigo em Inglês | MEDLINE | ID: mdl-33709900

RESUMO

Strains of the genus Bradyrhizobium associated with agronomically important crops such as soybean (Glycine max) are increasingly studied; however, information about symbionts of wild Glycine species is scarce. Australia is a genetic centre of wild Glycine species and we performed a polyphasic analysis of three Bradyrhizobium strains-CNPSo 4010T, CNPSo 4016T, and CNPSo 4019T-trapped from Western Australian soils with Glycine clandestina, Glycine tabacina and Glycine max, respectively. The phylogenetic tree of the 16S rRNA gene clustered all strains into the Bradyrhizobium japonicum superclade; strains CNPSo 4010T and CNPSo 4016T had Bradyrhizobium yuanmingense CCBAU 10071T as the closest species, whereas strain CNPSo 4019T was closer to Bradyrhizobium liaoningense LMG 18230T. The multilocus sequence analysis (MLSA) with five housekeeping genes-dnaK, glnII, gyrB, recA and rpoB-confirmed the same clusters as the 16S rRNA phylogeny, but indicated low similarity to described species, with nucleotide identities ranging from 93.6 to 97.6% of similarity. Considering the genomes of the three strains, the average nucleotide identity and digital DNA-DNA hybridization values were lower than 94.97 and 59.80 %, respectively, with the closest species. In the nodC phylogeny, strains CNPSo 4010T and CNPSo 4019T grouped with Bradyrhizobium zhanjiangense and Bradyrhizobium ganzhouense, respectively, while strain CNPSo 4016T was positioned separately from the all symbiotic Bradyrhizobium species. Other genomic (BOX-PCR), phenotypic and symbiotic properties were evaluated and corroborated with the description of three new lineages of Bradyrhizobium. We propose the names of Bradyrhizobium agreste sp. nov. for CNPSo 4010T (=WSM 4802T=LMG 31645T) isolated from Glycine clandestina, Bradyrhizobium glycinis sp. nov. for CNPSo 4016T (=WSM 4801T=LMG 31649T) isolated from Glycine tabacina and Bradyrhizobium diversitatis sp. nov. for CNPSo 4019T (=WSM 4799T=LMG 31650T) isolated from G. max.

20.
Int J Syst Evol Microbiol ; 69(6): 1800-1806, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30990395

RESUMO

Biological nitrogen fixation performed by diazotrophic bacteria is a vital process for agricultural and environmental sustainability. In recent years, bacterial classification has been based on genomic data, accelerating our understanding about the diversity, and resulting in the description of several new species. In this study, four strains (CNPSo 3140T, CNPSo 3235, CNPSo 3236 and CNPSo 3237) trapped by Phaseolus vulgaris and Mimosa pudica from soil samples of the Brazilian Atlantic Forest biome (Mata Atlântica) were submitted to polyphasic analysis to investigate their proper classification within the genus Mesorhizobium. The 16S rRNA gene phylogram showed that the strains present sequences identical to those of Mesorhizobium acaciaeand Mesorhizobium plurifarium, not allowing a clear taxonomic classification; however, when using multilocus sequence analysis methodology, the strains were grouped into a well-supported distinct clade, with <94.5 % nucleotide identity with the other species of the genus. The average nucleotide identity of CNPSo 3140T genome showed values below the threshold in relation to the closest species, of 89.75 % with Mesorhizobium plurifariumand of 88.83 % with Mesorhizobium hawassense; the digital DNA-DNA hybridization values were 39 and 37.70 % with the same species, respectively. Nodulation gene (nodC) phylogeny positioned the strains in an isolated cluster, showing greater similarity to Mesorhizobiumshonense. All data obtained in this study support the description of the novel species Mesorhizobiumatlanticum sp. nov. The type strain is CNPSo 3140T (=ABIP 206T=LMG 30305T=U1602T), isolated from a nodule of Phaseolus vulgaris.


Assuntos
Florestas , Mesorhizobium/classificação , Fixação de Nitrogênio , Phaseolus/microbiologia , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Brasil , DNA Bacteriano/genética , Mesorhizobium/isolamento & purificação , Mimosa , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa