Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(22): 15456-15465, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34724376

RESUMO

Sinking particulate organic matter (POM) is a primary component of the ocean's biological carbon pump that is responsible for carbon export from the surface to the deep sea. Lipids derived from plankton comprise a significant fraction of sinking POM. Our understanding of planktonic lipid biosynthesis and the subsequent degradation of lipids in sinking POM is based on the analysis of bulk samples that combine many millions of plankton cells or dozens of sinking particles, which averages out natural heterogeneity. We developed and applied a nanoflow high-performance liquid-chromatography electrospray-ionization high-resolution accurate-mass mass spectrometry lipidomic method to show that two types of sinking particles─marine snow and fecal pellets─collected in the western North Atlantic Ocean have distinct lipidomes, providing new insights into their sources and degradation that would not be apparent from bulk samples. We pressed the limit of this approach by examining individual diatom cells from a single culture, finding marked lipid heterogeneity, possibly indicative of fundamental mechanisms underlying cell division. These single-cell data confirm that even cultures of phytoplankton cells should be viewed as mixtures of physiologically distinct populations. Overall, this work reveals previously hidden lipidomic heterogeneity in natural POM and phytoplankton cells, which may provide critical new insights into microscale chemical and microbial processes that control the export of sinking POM.


Assuntos
Lipidômica , Fitoplâncton , Oceanos e Mares , Plâncton , Água do Mar
2.
Appl Environ Microbiol ; 84(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29305510

RESUMO

Phytoplankton replace phosphorus-containing lipids (P-lipids) with non-P analogues, boosting growth in P-limited oceans. In the model diatom Thalassiosira pseudonana, the substitution dynamics of lipid headgroups are well described, but those of the individual lipids, differing in fatty acid composition, are unknown. Moreover, the behavior of lipids outside the common headgroup classes and the relationship between lipid substitution and cellular particulate organic P (POP) have yet to be reported. We investigated these through the mass spectrometric lipidomics of P-replete (P+) and P-depleted (P-) T. pseudonana cultures. Nonlipidic POP was depleted rapidly by the initiation of P stress, followed by the cessation of P-lipid biosynthesis and per-cell reductions in the P-lipid levels of successive generations. Minor P-lipid degradative breakdown was observed, releasing P for other processes, but most P-lipids remained intact. This may confer an advantage on efficient heterotrophic lipid consumers in P-limited oceans. Glycerophosphatidylcholine (PC), the predominant P-lipid, was similar in composition to its betaine substitute lipid. During substitution, PC was less abundant per cell and was more highly unsaturated in composition. This may reflect underlying biosynthetic processes or the regulation of membrane biophysical properties subject to lipid substitution. Finally, levels of several diglycosylceramide lipids increased as much as 10-fold under P stress. These represent novel substitute lipids and potential biomarkers for the study of P limitation in situ, contributing to growing evidence highlighting the importance of sphingolipids in phycology. These findings contribute much to our understanding of P-lipid substitution, a powerful and widespread adaptation to P limitation in the oligotrophic ocean.IMPORTANCE Unicellular organisms replace phosphorus (P)-containing membrane lipids with non-P substitutes when P is scarce, allowing greater growth of populations. Previous research with the model diatom species Thalassiosira pseudonana grouped lipids by polar headgroups in their chemical structures. The significance of the research reported here is threefold. (i) We described the individual lipids within the headgroups during P-lipid substitution, revealing the relationships between lipid headgroups and hinting at the underlying biochemical processes. (ii) We measured total cellular P, placing P-lipid substitution in the context of the broader response to P stress and yielding insight into the implications of substitution in the marine environment. (iii) We identified lipids previously unknown in this system, revealing a new type of non-P substitute lipid, which is potentially useful as a biomarker for the investigation of P limitation in the ocean.


Assuntos
Diatomáceas/metabolismo , Fósforo/metabolismo , Estresse Fisiológico , Adaptação Fisiológica , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Espectrometria de Massas , Lipídeos de Membrana/metabolismo , Oceano Pacífico , Fosfolipídeos/metabolismo , Fósforo/deficiência , Água do Mar/química
3.
Nat Microbiol ; 3(5): 537-547, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29531367

RESUMO

Marine phytoplankton account for approximately half of global primary productivity 1 , making their fate an important driver of the marine carbon cycle. Viruses are thought to recycle more than one-quarter of oceanic photosynthetically fixed organic carbon 2 , which can stimulate nutrient regeneration, primary production and upper ocean respiration 2 via lytic infection and the 'virus shunt'. Ultimately, this limits the trophic transfer of carbon and energy to both higher food webs and the deep ocean 2 . Using imagery taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite, along with a suite of diagnostic lipid- and gene-based molecular biomarkers, in situ optical sensors and sediment traps, we show that Coccolithovirus infections of mesoscale (~100 km) Emiliania huxleyi blooms in the North Atlantic are coupled with particle aggregation, high zooplankton grazing and greater downward vertical fluxes of both particulate organic and particulate inorganic carbon from the upper mixed layer. Our analyses captured blooms in different phases of infection (early, late and post) and revealed the highest export flux in 'early-infected blooms' with sinking particles being disproportionately enriched with infected cells and subsequently remineralized at depth in the mesopelagic. Our findings reveal viral infection as a previously unrecognized ecosystem process enhancing biological pump efficiency.


Assuntos
Carbono/metabolismo , Haptófitas/virologia , Phycodnaviridae/fisiologia , Ciclo do Carbono , Cadeia Alimentar , Haptófitas/fisiologia , Oceanos e Mares , Fitoplâncton/fisiologia , Fitoplâncton/virologia , Tecnologia de Sensoriamento Remoto , Imagens de Satélites , Água do Mar/virologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa