Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Am Chem Soc ; 146(19): 13588-13597, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695646

RESUMO

Membrane channel proteins (MCPs) play key roles in matter transport through cell membranes and act as major targets for vaccines and drugs. For emerging ionic liquid (IL) drugs, a rational understanding of how ILs affect the structure and transport function of MCP is crucial to their design. In this work, GPU-accelerated microsecond-long molecular dynamics simulations were employed to investigate the modulating mechanism of ILs on MCP. Interestingly, ILs prefer to insert into the lipid bilayer and channel of aquaporin-2 (AQP2) but adsorb on the entrance of voltage-gated sodium channels (Nav). Molecular trajectory and free energy analysis reflect that ILs have a minimal impact on the structure of MCPs but significantly influence MCP functions. It demonstrates that ILs can decrease the overall energy barrier for water through AQP2 by 1.88 kcal/mol, whereas that for Na+ through Nav is increased by 1.70 kcal/mol. Consequently, the permeation rates of water and Na+ can be enhanced and reduced by at least 1 order of magnitude, respectively. Furthermore, an abnormal IL gating mechanism was proposed by combining the hydrophobic nature of MCP and confined water/ion coordination effects. More importantly, we performed experiments to confirm the influence of ILs on AQP2 in human cells and found that treatment with ILs significantly accelerated the changes in cell volume in response to altered external osmotic pressure. Overall, these quantitative results will not only deepen the understanding of IL-cell interactions but may also shed light on the rational design of drugs and disease diagnosis.


Assuntos
Permeabilidade da Membrana Celular , Ativação do Canal Iônico , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Líquidos Iônicos/química , Líquidos Iônicos/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Água/química , Linhagem Celular
2.
Anal Chem ; 96(12): 5029-5036, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38487877

RESUMO

Herein, 2-mercapto-5-benzimidazolesulfonate acid sodium salt dihydrate (MBZS)-protected gold-silver bimetallic nanoclusters, named MBZS-AuAg NCs, were synthesized. Interestingly, we found that MBZS-AuAg NCs solutions can exhibit different fluorescence color changes under sulfide stimulation. A series of modern analytical testing techniques were used to explore the interaction mechanism between MBZS-AuAg NCs and sulfide. Sulfide ions can not only cause MBZS-AuAg NCs to exhibit rich fluorescence color changes similar to those of a chameleon but also have four linear relationships between the response intensity and sulfide concentration. A wide-range sulfide fluorescence sensing platform was constructed based on four linear segments with different fluorescence color responses. This sensing platform can be directly used for the determination of S2- with a detection limit as low as 11 nM. The portable test paper based on MBZS-AuAg NCs can realize the visual and rapid detection of gaseous hydrogen sulfide with a detection limit of 100 ppb (v/v). The wide detection range of the proposed method not only allows it to be used as an alternative method for sulfide detection in environmental samples but also has potential applications in the rapid detection and early warning of hydrogen sulfide gas in industrial and mining scenarios.

3.
Electrophoresis ; 44(7-8): 634-645, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36153840

RESUMO

For a long time, the detection of nitroimidazole antibiotics (NIABs) has been a research focus in environmental analytical chemistry. In this work, a novel technique for the analysis of nitroimidazoles was established based on capillary electrophoresis (CE). UiO-66, synthesized using a solvothermal method, was utilized as an adsorbent in the dispersive solid-phase extraction (DSPE) of five different NIABs. The separation and detection of NIABs in environmental water samples were accomplished using the CE diode array detection method. The optimal extraction conditions were obtained after systematically studying the effects of adsorption time, the amount of extractant, and elution solvent on extraction efficiency. According to the results of the study, the limit of detections of the five NIABs were between 16 and 97 ng/mL, the relative standard deviations were between 0.32% and 0.55%, and the spike recoveries were between 87.43% and 104.8%. This study presents a novel technique for measuring NIABs in complex water samples.


Assuntos
Nitroimidazóis , Poluentes Químicos da Água , Antibacterianos/análise , Nitroimidazóis/análise , Poluentes Químicos da Água/análise , Eletroforese Capilar/métodos , Extração em Fase Sólida/métodos , Água , Cromatografia Líquida de Alta Pressão
4.
Inorg Chem ; 62(23): 9178-9189, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37235631

RESUMO

Nowadays, it is still elusive and challenging to discover the active sites of cobalt (Co) cations in different coordination structures, though Co-based oxides show their great potency in catalytic ozone elimination for air cleaning. Herein, different Co-based oxides are controllably synthesized including hexagonal wurtzite CoO-W with Co2+ in tetrahedral coordination (CoTd2+) and CoAl spinel with dominant CoTd2+, cubic rock salt CoO-R with Co2+ in octahedral coordination (CoOh2+), MgCo spinel with dominant Co3+ in octahedral coordination (CoOh3+), and Co3O4 with mixed CoTd2+ and CoOh3+. The valences are proved by X-ray photoelectron spectroscopy, and the coordinations are verified by X-ray absorption fine structure analysis. The ozone decomposition performances are CoOh3+ ∼ CoOh2+ ≫ CoTd2+, and CoOh3+ and CoOh2+ show a lower apparent activation energy of ∼42-44 kJ/mol than CoTd2+ (∼55 kJ/mol). In specific, MgCo shows the highest decomposition efficiency of 95% toward 100 ppm ozone at a high space velocity of 1,200,000 mL/gh, which still retains at 80% after a long-term running of 36 h at room temperature. The high activity is explained by the d-orbital splitting in the octahedral coordination, favoring the electron transfer in ozone decomposition reactions, which is also verified by the simulation. These results show the promising prospect of the coordination tuning of Co-based oxides for highly active ozone decomposition catalysts.

5.
Anal Chem ; 94(35): 12111-12119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36000825

RESUMO

Temperature dynamics reflect the physiological state of cells, and accurate measurement of intracellular temperature helps to understand the biological processes. Herein, we report a novel nanothermometer by conjugating a fluorescent probe 3-ethyl-2-[4-(1,2,2-triphenylvinyl)styryl]benzothiazol-3-ium iodide (TPEBT) with a thermoresponsive polymer poly(N-isopropylacrylamide-co-tetrabutylphosphonium styrenesulfonate) [P(NIPAM-co-TPSS)]. The derived nanoprobe TPEBT-P(NIPAM-co-TPSS) self-assembles into micelles with TPEBT as hydrophobic core and PNIPAM as hydrophilic shell. It exhibits aggregation-induced emission (AIE) at λex/λem = 420/640 nm in aqueous medium with a quantum yield of ΦF 11.9%. The rise in temperature transforms PNIPAM chains from linear to compact spheres to serve as the core of micelles, and meanwhile converts TPEBT from the state of aggregation to dispersion and redistributes in the micellar shell. Temperature-driven phase transition of P(NIPAM-co-TPSS) mediates the reversible aggregation and disaggregation of TPEBT and endows the nanothermometer with temperature-dependent AIE features and favorable sensitivity for temperature sensing in 32-40 °C. TPEBT-P(NIPAM-co-TPSS) is taken up by HeLa cells to distribute mainly in lysosomes. It enables quantitative visualization of in situ thermal dynamics in response to stimuli from carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, oligomycin, genipin, and lipopolysaccharide. The real-time monitoring of photothermal-induced intracellular temperature variation is further conducted.


Assuntos
Micelas , Polímeros , Células HeLa , Humanos , Transição de Fase , Polímeros/química , Temperatura
6.
Chirality ; 34(1): 147-159, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34749430

RESUMO

Chiral resolution of binaphthylamine is often a toilful conundrum in the field of analytical chemistry and biomedicine. The work puts forward a selective, sensitive, and miniaturized analytical method based on molecularly imprinted polymers (MIPs) as adsorbent for miniaturized tip solid-phase extraction (MTSPE) in the separation of binaphthylamine enantiomer. This method combines the advantages of MIPs (high selectivity), MTSPE (low consumption), and high-performance liquid chromatography (HPLC, high sensitivity). A simple synthesis methodology of MIP (P2) was conducted through bulk polymerization with (S)-(-)-1,1'-binaphthyl-2,2'-diamine (S-DABN) as template together with methacrylic acid monomer, and ethylene glycol dimethacrylate as cross-linker in proper porogen, realizing a selective recognition and efficient enrichment for S-DABN. The method exhibited appreciable linearity (0.06-1.00 mg ml-1 ), low quantification limit (0.056 mg ml-1 ), good absolute recoveries (45.70%-69.29%), and high precision (relative standard deviations ≤ 3.54%), along with low consumption (0.50 ml sample solution and 25.0 mg adsorbent). Based on the density functional theory, computational simulation was used to make a preliminary prediction for rational design of MIPs and gave a reasonable elaboration involving the potential mechanism of templates interacting with functional monomers. The adsorption kinetics and thermodynamics were investigated to evaluate the recombination process of substrates. In addition, the selectivity of MIPs for S-DABN was obtained by MIP-MTSPE coupled with HPLC, which supports the feasibility of this convenient design process. The proposed method was employed for selective extraction of S-DABN and exhibited promising potential in the application of chiral analysis.


Assuntos
Impressão Molecular , Polímeros , Adsorção , Cromatografia Líquida de Alta Pressão , Diaminas , Naftalenos , Extração em Fase Sólida , Estereoisomerismo
7.
J Appl Clin Med Phys ; 23(8): e13724, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35816461

RESUMO

PURPOSE: The application of point of care ultrasound (PoCUS) in medical education is a relatively new course. There are still great differences in the existence, quantity, provision, and depth of bedside ultrasound education. The left ventricular outflow tract velocity time integral (LVOT-VTI) has been successfully used in several studies as a parameter for hemodynamic management of critically ill patients, especially in the evaluation of fluid responsiveness. While LVOT-VTI has been broadly used, valuable applications using artificial intelligence (AI) in PoCUS is still limited. We aimed to identify the degree of correlation between auto LVOT-VTI and the manual LVOT-VTI acquired by PoCUS trained ICU doctors. METHODS: Among the 58 ICU doctors who attended PoCUS training from 1 September 2019 to 30 November 2020, 46 ICU doctors who trained for more than 3 months were enrolled. At the end of PoCUS training, each of the enrolled ICU doctors acquired echocardiography parameters of a new ICU patient in 2 h after new patient was admitted. One of the two bedside expert sonographers would take standard echocardiogram of new ICU patients within 24 h. For ICU doctors, manual LVOT-VTI was obtained for reference and auto LVOT-VTI was calculated instantly by using an AI software tool. Based on the image quality of the auto LVOT-VTI, ICU patients was separated into ideal group (n = 31) and average group (n = 15). RESULTS: Left ventricular end-diastolic dimension (LVEDd, p = 0.1028), left ventricular ejection fraction (LVEF, p = 0.3251), left atrial dimension (LA-d, p = 0.0962), left ventricular E/A ratio (p = 0.160), left ventricular wall motion (p = 0.317) and pericardial effusion (p = 1) had no significant difference between trained ICU doctors and expert sonographer. ICU patients in average group had greater sequential organ failure assessment (SOFA) score (7.33 ± 1.58 vs. 4.09 ± 0.57, p = 0.022) and lactic acid (3.67 ± 0.86 mmol/L vs. 1.46 ± 0.12 mmol/L, p = 0.0009) with greater value of LVEDd (51.93 ± 1.07 vs. 47.57 ± 0.89, p = 0.0053), LA-d (39.06 ± 1.47 vs. 35.22 ± 0.98, p = 0.0334) and percentage of decreased wall motion (p = 0.0166) than ideal group. There were no significant differences of δLVOT-VTI (|manual LVOT-VTI - auto LVOT-VTI|/manual VTI*100%) between the two groups (8.8% ± 1.3% vs. 10% ± 2%, p = 0.6517). Statistically, significant correlations between manual LVOT-VTI and auto LVOT-VTI were present in the ideal group (R2  = 0.815, p = 0.00) and average group (R2  = 0.741, p = 0.00). CONCLUSIONS: ICU doctors could achieve the satisfied level of expertise as expert sonographers after 3 months of PoCUS training. Nearly two thirds of the enrolled ICU doctors could obtain the ideal view and one third of them could acquire the average view. ICU patients with higher SOFA scores and lactic acid were less likely to acquire the ideal view. Manual and auto LVOT-VTI had statistically significant agreement in both ideal and average groups. Auto LVOT-VTI in ideal view was more relevant with the manual LVOT-VTI than the average view. AI might provide real-time guidance among novice operators who lack expertise to acquire the ideal standard view.


Assuntos
Inteligência Artificial , Função Ventricular Esquerda , Humanos , Unidades de Terapia Intensiva , Ácido Láctico , Volume Sistólico
8.
Molecules ; 27(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36364442

RESUMO

The development of efficient electrochemical seawater splitting catalysts for large-scale hydrogen production is of great importance. In this work, we report an amorphous Co-Mo-B film on Ni foam (Co-Mo-B/NF) via a facile one-step electrodeposition process. Such amorphous Co-Mo-B/NF possesses superior activity with a small overpotential of 199 mV at 100 mA cm-2 for a hydrogen evolution reaction in alkaline seawater. Notably, Co-Mo-B/NF also maintains excellent stability for at least 24 h under alkaline seawater electrolysis.

9.
Chemphyschem ; 22(4): 419-429, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33502098

RESUMO

Lithium-sulfur batteries with high energy density are considered as one of the most promising future energy storage devices. However, the parasitic lithium polysulfides shuttle phenomenon severely hinders the commercialization of such batteries. Ionic liquids have been found to suppress the lithium polysulfides solubility, diminishing the shuttle effect effectively. Herein, we performed classical molecular dynamics simulations to explore the microscopic mechanism and transport behaviors of typical Li2 S8 species in ionic liquids and ionic liquid-based electrolyte systems. We found that the trifluoromethanesulfonate anions ([OTf]- ) exhibit higher coordination strength with lithium ions compared with bis(trifluoromethanesulfonyl)imide anions ([TFSI]- ) in static microstructures. However, the dynamical characteristics indicate that the presence of the [OTf]- anions in ionic liquid electrolytes bring faster Li+ exchange rate and easier dissociation of Li+ solvation structures. Our simulation models offer a significant guidance to future studies on designing ionic liquid electrolytes for lithium-sulfur batteries.

10.
Langmuir ; 37(16): 5012-5021, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33861604

RESUMO

Trace detection based on surface-enhanced Raman scattering (SERS) has attracted considerable attention, and exploiting efficient strategies to stretch the limit of detection and understanding the mechanisms on molecular level are of utmost importance. In this work, we use ionic liquids (ILs) as trace additives in a protein-TiO2 system, allowing us to obtain an exceptionally low limit of detection down to 10-9 M. The enhancement factors (EFs) were determined to 2.30 × 104, 6.17 × 104, and 1.19 × 105, for the three systems: one without ILs, one with ILs in solutions, and one with ILs immobilized on the TiO2 substrate, respectively, corresponding to the molecular forces of 1.65, 1.32, and 1.16 nN quantified by the atomic force microscopy. The dissociation and following hydration of ILs, occurring in the SERS system, weakened the molecular forces but instead improved the electron transfer ability of ILs, which is the major contribution for the observed excellent detection. The weaker diffusion of the hydrated IL ions immobilized on the TiO2 substrate did provide a considerably greater EF value, compared to the ILs in the solution. This work clearly demonstrates the importance of the hydration of ions, causing an improved electron transfer ability of ILs and leading to an exceptional SERS performance in the field of trace detection. Our results should stimulate further development to use ILs in SERS and related applications in bioanalysis, medical diagnosis, and environmental science.


Assuntos
Líquidos Iônicos , Simulação de Dinâmica Molecular , Análise Espectral Raman , Titânio
11.
J Chem Inf Model ; 61(7): 3376-3385, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34161083

RESUMO

Liquid-liquid extraction (LLE) is an important technique to separate aromatics from aliphatics since these compounds have very similar boiling points and cannot be separated by distillation. Ionic liquids (ILs) are considered as potential extractants to extract aromatics from aliphatics. In this paper, molecular dynamics (MD) simulations were used to predict the extraction property (i.e., capacity and selectivity) of ILs for the LLE of aromatics from aliphatics. The extraction properties of seven different ILs including [C2mim][Tf2N], [C2mim][TFO], [C2mim][SCN], [C2mim][DCA], [C2mim][TCM], [C4mim][Tf2N], and [C8mim][Tf2N] were investigated. Results show that ILs with shorter alkyl chain cations and [Tf2N]- anion exhibit better extraction efficiency than other ILs, which is in agreement with previously reported experimental data on the extraction of toluene from aliphatics and further validated the reliability of the proposed model. The binding energies between ILs and organic molecules were calculated by the density functional theory, which help explain the different extraction behaviors of different ILs. The symmetry-adapted perturbation theory analysis was performed to further understand the interaction mechanisms between ILs and organics. Our study shows that the [Tf2N]- anion also has the best extraction capability for heavier aromatics (o-xylene, m-xylene, and p-xylene) from common aliphatics (heptane and octane). The MD modeling approach can be a low-cost in silico tool for the high-throughput fast screening of ILs for the LLE of aromatics from aliphatics.


Assuntos
Líquidos Iônicos , Ânions , Extração Líquido-Líquido , Simulação de Dinâmica Molecular , Reprodutibilidade dos Testes
12.
Phys Chem Chem Phys ; 23(5): 3246-3255, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33236751

RESUMO

Reducing carbon dioxide emissions is one of the possible solutions to prevent global climate change, which is urgently needed for the sustainable development of our society. In this work, easily available, biodegradable amino acid ionic liquids (AAILs) with great potential for CO2 absorption in the manned closed space such as spacecraft, submarines and other manned devices are used as the basic material. Molecular dynamics simulations and ab initio calculations were performed for 12 AAILs ([P4444][X] and [P66614][X], [X] = X = [GLy]-, [Im]-, [Pro]-, [Suc]-, [Lys]-, [Asp]2-), and the dynamic characteristics and the internal mechanism of AAILs to improve CO2 absorption capacity were clarified. Based on structural analysis and the analysis of interaction energy including van der Waals and electrostatic interaction energy, it was revealed that the anion of ionic liquids dominates the interaction between CO2 and AAILs. At the same time, the CO2 absorption capacity of AAILs increases in the order [Asp]2- < [Suc]- < [Lys]- < [Pro]- < [Im]- < [Gly]-. Meanwhile, the synergistic absorption of CO2 by multiple-sites of amino and carboxyl groups in the anion was proved by DFT calculations. These findings show that the anion of AAILs can be an effective factor to regulate the CO2 absorption process, which can also provide guidance for the rational and targeted molecular design of AAILs for CO2 capture, especially in the manned closed space.


Assuntos
Aminoácidos/química , Dióxido de Carbono/química , Líquidos Iônicos/química , Teoria da Densidade Funcional , Modelos Químicos , Simulação de Dinâmica Molecular
13.
Phys Chem Chem Phys ; 22(4): 1820-1825, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31691695

RESUMO

Understanding and manipulating nano-confined ionic liquids (ILs) has tremendous implications in nanotechnology and chemical engineering. Here, a peculiar growth phenomenon of a nano-confined [Bmim][NTFI] ionic liquid is revealed by utilizing two-dimensional channels in mica. The intercalated ILs underwent liquid-solid transition and self-assembled into a self-similar two-dimensional crystal in an epitaxial relation with the confining material. The terraced IL crystals, ranging from monolayer to bilayer to several dozen layers, are characterized by unexpectedly large areas extending to µm-scale and enhanced thermal stability with a melting temperature 73 K higher than that of the corresponding bulk IL. The notable asymmetric feature of the layered crystals hints at anisotropic growth under confinement, which produces a well-defined hexagonal geometric shape. Finally, a molecular scale growth mechanism of ordered ILs is qualitatively interpreted by a birth-and-spread model. Our findings have enabled new research on nanoconfined ILs and opened up an avenue to tailoring the structure of ILs for their applications under confinement.

14.
Small ; 15(29): e1804508, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30680916

RESUMO

The understanding of confined structure and flow property of ionic liquid (IL) in a nanochannel are essential for the efficient application of ILs in the green chemical processes. In this work, the ionic structure and various flow behaviors of ILs inside graphene nanochannels via molecular dynamics simulations are shown. The effect of the nanochannel structure on confined flow is explored, showing that the width mainly heightens the viscosity while the oxidation degree primarily enhances the interfacial friction coefficient. Tuning the width and oxidation degree of nanochannel, three different flow behaviors including Poiseuille, partial plunger and full plunger flow can be achieved, where the second one does not occur in water or other organic solvents. To describe the special flow behavior, an effective influence extent of the nanochannel (w EIE ) is defined, whose value can distinguish the above flows effectively. Based on w EIE , the phase diagrams of flow behavior for the nanochannel structure and pressure gradient are obtained, showing that the critical pressure gradient decreases with width and increases with the oxidation degree. Based on the quantitative relations between confined structures, viscosity, friction coefficient, flow behavior, and nanochannel structure, the intrinsic mechanism of regulating the flow behavior and rational design of nanochannel are finally discussed.

15.
Hepatology ; 67(3): 1071-1087, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28960380

RESUMO

It is urgent that the means to improve liver regeneration (LR) be found, while mitigating the concurrent risk of hepatocarcinogenesis (HCG). Nuclear receptor corepressor 1 (NCoR1) is a co-repressor of nuclear receptors, which regulates the expression level of metabolic genes; however, little is known about its potential contribution for LR and HCG. Here, we found that liver-specific NCoR1 knockout in mice (NCoR1Δhep ) dramatically enhances LR after partial hepatectomy and, surprisingly, blocks the process of diethylnitrosamine (DEN)-induced HCG. Both RNA-sequencing and metabolic assay results revealed improved expression of Fasn and Acc2 in NCoR1Δhep mice, suggesting the critical role of de novo fatty acid synthesis (FAS) in LR. Continual enhanced de novo FAS in NCoR1Δhep mice resulted in overwhelmed adenosine triphosphate ATP and nicotinamide adenine dinucleotide phosphate (NADPH) consumption and increased mitochondrial reactive oxygen species production, which subsequently attenuated HCG through inducing apoptosis of hepatocytes at an early stage after DEN administration. CONCLUSION: NCoR1 functions as a negative modulator for hepatic de novo FAS and mitochondria energy adaptation, playing distinct roles in regeneration or carcinogenesis. (Hepatology 2018;67:1071-1087).


Assuntos
Carcinogênese/metabolismo , Lipogênese/genética , Regeneração Hepática/genética , Fígado/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Animais , Apoptose , Proliferação de Células/genética , Ácidos Graxos/biossíntese , Hepatócitos/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout
16.
Phys Chem Chem Phys ; 21(35): 19216-19225, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31441485

RESUMO

New-generation lithium-ion batteries use ionic liquids (ILs) as electrolyte solutions, greatly enhancing the safety and energy storage capacity of the battery. Fundamental molecular insights are useful for understanding the advantages of high conductivity of IL solvent electrolytes over organic solvent ones. In this work, we computationally studied two organic solvents (DMC and DEC) and four IL solvents ([Cnmim][BF4] and [Cnmim][TFSI] (n = 2, 4)) to examine the physicochemical properties of high concentration electrolytes. As expected, the IL solvent electrolytes exhibit higher density and viscosity, and larger self-diffusion coefficients and conductivity than the organic solvent electrolytes. Further, the microstructures of the lithium salt LiTFSI in various solvent electrolytes were investigated to explore the effect of the organic and IL solvents on the ionic association of the ions Li+ and TFSI-. The structural analysis of LiTFSI revealed that the organic solvents restrict the free motion of the ions, reducing the conductivity of the electrolytes. The [BF4]-type IL electrolytes have higher conductivity than the [TFSI]-type IL electrolytes, especially [C4mim][BF4] with the highest conductivity among the IL-based electrolytes. More importantly, it was proved that the dissolution of LiTFSI in the IL solvents is an anion-driven process.

17.
Phys Chem Chem Phys ; 21(32): 17985-17992, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31385579

RESUMO

As a promising anode material, TiO2(B) has attracted much attention in recent years due to its high power and capacity performances. First-principles calculations are performed here to reveal the electronic properties and the transport of lithium (Li) in the bulk TiO2(B) with and without atomic doping. It is found that a 4-fold coordinated O atom has the lowest formation energy and the smallest bandgap and is the atom that most easily forms an O-vacancy (Ov). In this work, a series of p-type (N, P, As), n-type (F, Cl, Br), and isoelectronic (S, Se, Te) dopants in TiO2(B) are studied. For n-type dopants, the substitution of the F atom has no significant effect on the electronic structure, which results in the lowest formation energy. This result demonstrates that the F atom can provide high intrinsic stability. Analysis of the insertion process of Li in doped TiO2(B) shows that N-doping is the most competitive choice because it not only introduces a lower bandgap of TiO2(B) but it also has the highest binding energy with Li. The advantage of N-doping is derived from the self-compensation effect. Also, three possible transport paths of Li in TiO2(B) were studied via the CI-NEB method. The results show that the energy barrier of all diffusion paths of F doping is lower than that of pure TiO2(B), where path 2 along the b-axis channel has the lowest energy (0.32 eV). This study is expected to shed some light on the electronic structures of TiO2(B) and the transport properties of Li in it.

18.
Phys Chem Chem Phys ; 21(24): 12767-12776, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31020276

RESUMO

Understanding the structural transition of ionic liquids (ILs) confined in a nanospace is imperative for the application of ILs in energy storage, gas separation, and other chemical engineering techniques. In this work, the quantitative relations between the properties and height of the nanochannel (H) for the ([Emim]+[TF2N]-) IL are explored through molecular dynamics simulations. Interestingly, the entropy of the confined IL exhibits a nonmonotonic behavior as H increases: initially increasing for H < 1.0 nm and then decreasing for 1.0 < H < 1.1 nm, followed by increasing again for H > 1.1 nm; it finally approaches that of liquid bulk ILs. The vibrational spectrum of the confined IL is analyzed to investigate the nature of nonmonotonic entropy, showing that the liquidity and partial solidity will be respectively attenuated and enhanced as H decreases from 5.0 to 0.75 nm. Moreover, the hydrogen bond (HB) network and external force are also calculated, showing similar nonmonotonic behaviors when compared with the thermodynamic properties. The entropy gain of the confined IL originates from the reduced HB interactions, weaker external force, and partial solid nature, where more phase space sampling for ILs inside a bilayer graphene nanochannel (BLGC) can be achieved. All the above relations demonstrate that there exists a critical height of the nanochannel (HCR = 1.0 nm) at which the confined IL possesses weaker HB interaction, higher entropy, and better stability. The critical height of the nanochannel is also identified in the analysis of the local structures of cation head groups and anions, indicating that the confined IL could have a faster in-plane diffusive ability. These factors can serve as key indicators in quantitatively characterizing the mechanism for the structural transition of ILs inside a nanochannel and facilitate the rational design of nanopores and nanochannels to regulate the properties and structures of ILs in practical application scenarios.

19.
Zhongguo Dang Dai Er Ke Za Zhi ; 21(4): 317-322, 2019 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-31014421

RESUMO

OBJECTIVE: To investigate the causes and clinical features of children with traumatic brain injury (TBI) who need hospitalization or emergency observation. METHODS: A retrospective analysis was performed for the clinical data of 126 children with TBI who were admitted to the emergency department from January 1, 2014 to August 31, 2016, including causes of injury and clinical features. RESULTS: Of the 126 children, there were 95 boys and 31 girls, with a mean age of 2.8 years (range 0.8-5.5 years). The children aged <1 year accounted for 38.1% (48/126), and 26 children died. The two most common types of TBI were epidural hematoma (54.0%) and subarachnoid hemorrhage (50.8%). Of the 126 children, 83 (65.9%) had a Glasgow Coma Scale score of ≤8 within 24 hours after admission. There were different causes of TBI and places where TBI occurred in different age groups. The two leading causes of TBI were falls (51.6%) and road traffic injuries (42.9%). Compared with those in the other age groups, the children in the age <1 year group were most likely to experience injury due to falls (46%; P=0.023). Thirty-five percent of all TBI due to road traffic injuries occurred in the children aged 3-6 years (P<0.001). Most TBI cases occurred at home (47.6%) or on roads/streets (45.2%). Among those who experienced TBI at home, the children aged <1 year accounted for the highest proportion of 48% (P=0.002), and 53% of the patients aged 3-6 years experienced TBI on roads/streets. The most common cause of death in children with TBI was road traffic injury, which accounted for 69%. Among those who died, the children aged <1 year accounted for the highest proportion (62%). CONCLUSIONS: There are different causes of TBI and places where TBI occurs in different age groups. Among children with TBI, the children aged <1 year account for the highest proportion and have the highest number of deaths, with falls at home as the most common cause of TBI. Children aged 3-6 years tend to suffer TBI due to road traffic injury. Road traffic injury is the leading cause of death.


Assuntos
Lesões Encefálicas Traumáticas , Criança , Pré-Escolar , Feminino , Escala de Coma de Glasgow , Hospitalização , Humanos , Masculino , Estudos Retrospectivos
20.
Chemphyschem ; 19(20): 2741-2750, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30003635

RESUMO

The molecular structures of ionic liquids at interfaces play a crucial role in determining their chemical activities in applications. In situ X-ray photoelectron spectroscopy (XPS) was used to track the evolution of X-ray irradiation-induced chemical reactions in a series of ionic liquids ([Cn mim][AuCl4 ]; n=4, 6, 8, 10) on the Si (111) single-crystal surface. Analyses of microstructure and chemical bonding based on the XPS results indicated that reactions occurred at the vapor/liquid interfaces of the ionic liquids. The time-resolved XPS spectra revealed that with increasing irradiation time, the intensity of the peak corresponding to trivalent Au anion decreased for the four ionic liquids as Au was continually reduced to a lower chemical state and finally converted to gold nanoparticles. The rate and conversion of the reaction were associated with the length of the alkyl chain of the ionic liquids cation. Molecular dynamics simulations further revealed that the alkyl chain of the cation in the ionic liquids was oriented towards the vacuum environment at the vapor/liquid interface. Our results provide a real-time atomic-scale experimental evidence of organic reactions at the vapor/liquid interfaces of ionic liquids. The findings are important for understanding the roles of ionic liquids in catalysis, separation, electrochemistry, functional materials, and so on.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa