RESUMO
Herein novel multicompartment nanoparticles (MCNs) that combine high stability and cargo loading capacity are developed. The MCNs are fabricated by crystallization-driven self-assembly (CDSA) of a tailor-made 21 arm star polymer, poly(L-lactide)[poly(tert-butyl acrylate)-block-poly(ethylene glycol)]20 [PLLA(PtBA-b-PEG)20 ]. Platelet-like or spherical MCNs containing a crystalline PLLA core and hydrophobic PtBA subdomains are formed and stabilized by PEG. Hydrophobic cargos, such as Nile Red and chemotherapeutic drug doxorubicin, can be successfully encapsulated into the collapsed PtBA subdomains with loading capacity two orders of magnitude higher than traditional CDSA nanoparticles. Depolarized fluorescence measurements of the Nile Red loaded MCNs suggest that the free volume of the hydrophobic chains in the nanoparticles may be the key for regulating their drug loading capacity. In vitro study of the MCNs suggests excellent cytocompatibility of the blank nanoparticles as well as a dose-dependent cellular uptake and cytotoxicity of the drug-loaded MCNs.
Assuntos
Nanopartículas , Polímeros , Polímeros/química , Portadores de Fármacos/química , Cristalização , Polietilenoglicóis/química , Nanopartículas/química , MicelasRESUMO
A general approach to asymmetrically localize nanoparticles (NPs) in larger polymeric nanostructures is demonstrated by coassembly of tadpole-like silver NPs (AgNPs) and amphiphilic block copolymers (BCPs). The tadpole-like AgNPs are prepared by template synthesis using a tailor-made A(BC)20 star polymer, namely poly(ethylene glycol)[poly(acrylic acid)-block-polystyrene]20 [PEG(PAA-b-PS)20 ], as template resulting in AgNPs decorated with twenty short PS chains and one long PEG chain, named Ag@PEG(PS)20 . The asymmetric distribution of these AgNPs in various polymeric nanostructures, e.g., spherical micelles, cylindrical micelles, vesicles, and sponge phase, is achieved via coassembly of the as-prepared Ag@PEG(PS)20 and PEG-b-PS in solution driven by the anisotropic nature of the Ag@PEG(PS)20 . This report not only provides a new strategy for the fabrication of tadpole-like NPs but also offers opportunity for off-center distributing NPs in hybrid assemblies, which may find applications in, e.g., sensing, catalysis, and diagnostics.
Assuntos
Nanopartículas Metálicas , Nanopartículas , Animais , Larva , Micelas , Polímeros , PrataRESUMO
Two rhomboidal metallacycles based on metal-coordination-driven self-assembly are presented. Because metal-coordination interactions restrict the rotation of phenyl groups on tetraphenylethene units, these metallacycles were emissive both in solution and in solid state, and their aggregation-induced emission properties were well-retained. Moreover, the rhomboidal metallacyclic structures offer a platform for intermolecular packing beneficial for the formation of liquid crystalline phases. Therefore, although neither of building blocks shows mesogenic properties, both thermotropic and lyotropic (in DMF) mesophases were observed in one of metallacycles, indicating that mesophases could be induced by metal-coordination interactions. This study not only reveals the mechanism for the formation of cavity-cored liquid crystals, but also provides a convenient approach to preparing supramolecular luminescent liquid crystals, which will serve as good candidates for chemo sensors and liquid crystal displays.