Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2404556, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032001

RESUMO

Silicon (Si) is a promising anode material for high-energy-density lithium-ion batteries, but the significant volume change of Si particles during alloying/dealloying with lithium (Li) undermines the mechanical integrity of Si anode, causing electrode fracture, delamination and rapid capacity decay. Herein, a robust triple crosslinked network (TCN) binder with high ionic conductivity and hierarchical stress dissipation is reported for Si anodes, which is prepared by in situ chemical crosslinking polyacrylic acid (PAA) and melamine (MA). The triple interactions of hydrogen bonds, electrostatic interactions, and covalent amide bonds enhance the adhesion of binder to Si and synergistically promote stress dissipation within Si anodes, thus strengthening the dynamic structural stability of Si anodes during cycling. Moreover, the rapid coupling/decoupling of Li+ with the TCN binder enables an impressive Li+ transference number of 0.63 and high ionic conductivity of 1.2 × 10-4 S cm-1. Consequently, the Si-TCN anode delivers specific capacity of 2268 mAh g-1 with a high mass loading of 2 mg cm-2, high-rate performance of 1673 mAh g-1 at 5 A g-1, and stable cycling for 250 cycles at 1 A g-1, thus showing great prospects for high-energy-density Si-based batteries.

2.
Small ; 19(49): e2303784, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37612805

RESUMO

Li-S batteries are regarded as promising devices for energy storage systems owing to high energy density, low cost, and environmental friendliness. However, challenges of polysulfides shuttling in sulfur cathode and dendrite growth of lithium anode severely hinder the practical application. Developing advanced skeletons simultaneously regulating the cathode and anode is significant and challenging. Hence, a novel and scalable strategy combining spray drying and topological nitriding is proposed, and hierarchically assembled rGO hollow microspheres encapsulated highly porous nanospheres consisted of ultrafine Nb4 N5 -Nb2 O5 or Nb4 N5 nanoparticles as multifunctional skeletons for S and Li are designed. In such unique architecture, a 3D highly porous structure provides abundant void space for loading of S and Li, and accommodates volume change during cycling. Moreover, Nb4 N5 -Nb2 O5 heterostructured interface promotes adsorption-conversion process of polysulfides, while strong lithophilic Nb4 N5 induces the selective infiltration of Li into the void of the skeleton and regulates the uniform deposition and growth. More interestingly, in situ generated Li3 N@Nb ion/electron conducting interfaces induced by the reaction of Nb4 N5 and Li reduce the nucleation overpotential and induce selective deposition of Li into the cavity. Consequently, the Li-S full cell exhibits superior cycling stability and impressive rate performance with a low capacity ratio of negative/positive.

3.
Small ; 18(22): e2201137, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35527344

RESUMO

Cost-effective electrocatalysts for the hydrogen evolution reaction (HER) spanning a wide pH range are highly desirable but still challenging for hydrogen production via electrochemical water splitting. Herein, Mo5 N6 -MoS2 heterojunction nanosheets prepared on hollow carbon nanoribbons (Mo5 N6 -MoS2 /HCNRs) are designed as Mott-Schottky electrocatalysts for efficient pH-universal HER. The in-plane Mo5 N6 -MoS2 Mott-Schottky heterointerface induces electron redistribution and a built-in electric field, which effectively activates the inert MoS2 basal planes to intrinsically increase the electrocatalytic activity, improve electronic conductivity, and boost water dissociation activity. Moreover, the vertical Mo5 N6 -MoS2 nanosheets provide more activated sites for the electrochemical reaction and facilitate mass/electrolyte transport, while the tightly coupled HCNRs substrate and metallic Mo5 N6 provide fast electron transfer paths. Consequently, the Mo5 N6 -MoS2 /HCNRs electrocatalyst delivers excellent pH-universal HER performances exemplified by ultralow overpotentials of 57, 59, and 53 mV at a current density of 10 mA cm-2 in acidic, neutral, and alkaline electrolytes with Tafel slopes of 38.4, 43.5, and 37.9 mV dec-1 , respectively, which are superior to those of the reported MoS2 -based catalysts and outperform Pt in overall water splitting. This work proposes a new strategy to construct an in-plane heterointerface on the nanoscale and provides fresh insights into the HER electrocatalytic mechanism of MoS2 -based heterostructures.

4.
Small ; 18(39): e2203173, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36026534

RESUMO

2D transition metal disulfides (TMDs) are promising and cost-effective alternatives to noble-metal-based catalysts for hydrogen production. Activation of the inert basal plane of TMDs is crucial to improving the catalytic efficiency. Herein, introduction of in-plane sulfur vacancies (Sv ) and 3d transition metal dopants in concert activates the basal planes of MoS2 (M-Sv -MoS2 ) to achieve high activities in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Acetate introducing mild wet chemical etching removes surface S atoms facilitating subsequent cation exchange between the exposed Mo atoms and targeted metal ions in solution. Density-functional theory calculation demonstrates that the exposed 3d transition metal dopants in MoS2 basal planes serve as multifunctional active centers, which not only reduce ΔGH* but also accelerate water oxidation. As a result, the optimal Ni-Sv -MoS2 and Co-Sv -MoS2 electrocatalysts show excellent stability and alkaline HER and OER characteristics such as low overpotentials of 101 and 190 mV at 10 mA cm-2 , respectively. The results reveal a strategy to activate the inert MoS2 basal planes by defect and doping co-engineering and the technique can be extended to other types of TMDs for high-efficiency electrocatalysis beyond water splitting.

5.
Small ; 14(25): e1800667, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29749126

RESUMO

Molybdenum phosphide (MoP) is a promising non-noble-metal electrocatalyst in the hydrogen evolution reaction (HER), but practical implementation is impeded by the sluggish HER kinetics and poor chemical stability. Herein, a novel high-efficiency HER electrocatalyst comprising MoP nanoflakes intercalated nitrogen-doped graphene nanobelts (MoP/NG), which are synthesized by one-step thermal phosphiding organic-inorganic hybrid dodecylamine (DDA) inserted MoO3 nanobelts, is reported. The intercalated DDA molecules are in situ carbonized into the NG layer and the sandwiched MoO3 layer is converted into MoP nanoflakes which are intercalated between the NG layers forming the alternatingly stacked MoP/NG hybrid nanobelts. The MoP nanoflakes provide abundant edge sites and the sandwiched MoP/NG hybrid enables rapid ion/electron transport thus yielding excellent electrochemical activity and stability for HER. The MoP/NG shows a low overpotential of 94 mV at 10 mA cm-2 , small Tafel slope of 50.1 mV dec-1 , and excellent electrochemical stability with 99.5% retention for over 22 h.

6.
J Nanosci Nanotechnol ; 18(1): 30-38, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29768807

RESUMO

Flexible supercapacitors (SCs) are desirable for elastic and clothing electronic products owning to their considerable safety, high foldability and outstanding power density. Herein, multilayered films composed of alternating mesoporous Nb4N5 nanobelts and rGO nanosheets (Nb4N5/rGO) are designed and fabricated exhibiting good flexibility. The folding Nb4N5/rGO film electrode reveals an areal capacitance of 141 mF cm-2 (at 1 mA cm-2) along with remarkable cycling stability (the capacitance retention is 90% after 6,000 cycles). The flexible SCs devices were constructed by interlayer couple films of Nb4N5/rGO electrodes with PVA/H2SO4 gel as the electrolyte, which exhibited huge volumetric capacitance of 19 F cm-3 (at 0.1 A cm-3) and a considerable energy density of 0.98 mW h cm-3 with a power density of 0.029 W cm-3. Additionally, the as-obtained folding devices bode outstanding cycling stability with capacitance retention of 89% after 4,000 cycles measured by cyclic voltammetry method (at 100 mV s-1). Above results about niobium nitride based flexible electrodes and devices exploit a platform for wearable electronics and flexible devices.

7.
Angew Chem Int Ed Engl ; 55(3): 979-82, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26630234

RESUMO

Thick, uniform, easily processed, highly conductive polymer films are desirable as electrodes for solar cells as well as polymer capacitors. Here, a novel scalable strategy is developed to prepare highly conductive thick poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (HCT-PEDOT:PSS) films with layered structure that display a conductivity of 1400 S cm(-1) and a low sheet resistance of 0.59 ohm sq(-1). Organic solar cells with laminated HCT-PEDOT:PSS exhibit a performance comparable to the reference devices with vacuum-deposited Ag top electrodes. More importantly, the HCT-PEDOT:PSS film delivers a specific capacitance of 120 F g(-1) at a current density of 0.4 A g(-1). All-solid-state flexible symmetric supercapacitors with the HCT-PEDOT:PSS films display a high volumetric energy density of 6.80 mWh cm(-3) at a power density of 100 mW cm(-3) and 3.15 mWh cm(-3) at a very high power density of 16160 mW cm(-3) that outperforms previous reported solid-state supercapacitors based on PEDOT materials.

8.
Small ; 11(15): 1847-56, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25546735

RESUMO

A coaxial electrode structure composed of manganese oxide-decorated TiC/C core/shell nanofiber arrays is produced hydrothermally in a KMnO4 solution. The pristine TiC/C core/shell structure prepared on the Ti alloy substrate provides the self-sacrificing carbon shell and highly conductive TiC core, thus greatly simplifying the fabrication process without requiring an additional reduction source and conductive additive. The as-prepared electrode exhibits a high specific capacitance of 645 F g(-1) at a discharging current density of 1 A g(-1) attributable to the highly conductive TiC/C and amorphous MnO2 shell with fast ion diffusion. In the charging/discharging cycling test, the as-prepared electrode shows high stability and 99% capacity retention after 5000 cycles. Although the thermal treatment conducted on the as-prepared electrode decreases the initial capacitance, the electrode undergoes capacitance recovery through structural transformation from the crystalline cluster to layered birnessite type MnO2 nanosheets as a result of dissolution and further electrodeposition in the cycling. 96.5% of the initial capacitance is retained after 1000 cycles at high charging/discharging current density of 25 A g(-1). This study demonstrates a novel scaffold to construct MnO2 based SCs with high specific capacitance as well as excellent mechanical and cycling stability boding well for future design of high-performance MnO2-based SCs.

9.
J Nanosci Nanotechnol ; 15(6): 4136-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26369022

RESUMO

Implants that can inhibit osteoclastogenesis and enhance osteogenesis are desirable for osteoporosis patients. In this study, titania nanotube (Ti-NT) materials, having nanotube diameters of 30, 80, and 120 nm, were produced separately by anodization at 10, 40, and 60 V, respectively. The introduction of Ti-NTs to titanium substrates significantly reduced the formation and activity of osteoclasts on samples. With the enlargement of the nanotube diameter, the osteoclasts number, tartrate-resistant acid phosphatase staining and activity, and related gene expressions of osteoclasts were further reduced. Osteogenic ability was enhanced by increasing the nanotube diameter. Thus, larger-diameter nanotube implants, such as NT60, were better able to inhibit bone absorption and enhance bone formation to prevent implant loss and failure, especially for osteoporosis patients.


Assuntos
Nanotubos/química , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Titânio/química , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Osteoclastos/metabolismo , Tamanho da Partícula , Propriedades de Superfície , Titânio/farmacologia
10.
Angew Chem Int Ed Engl ; 53(10): 2643-7, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24482020

RESUMO

Recent biochemical results suggest that auxin (IAA) efflux is mediated by a vesicular cycling mechanism, but no direct detection of vesicular IAA release from single plant cells in real-time has been possible up to now. A TiC@C/Pt-QANFA micro-electrochemical sensor has been developed with high sensitivity in detection of IAA, and it allows real-time monitoring and quantification of the quantal release of auxin from single plant protoplast by exocytosis.


Assuntos
Técnicas Eletroquímicas , Ácidos Indolacéticos/análise , Nanofios/química , Plantas/química , Carbono/química , Exocitose , Microeletrodos , Tamanho da Partícula , Platina/química , Prótons , Propriedades de Superfície , Fatores de Tempo , Titânio/química
11.
Int J Biol Macromol ; 253(Pt 2): 126714, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37673154

RESUMO

Carbon dots (CDs) have emerged as a promising subclass of optical nanomaterials with versatile functions in multimodal biosensing. Howbeit the rapid, reliable and reproducible fabrication of multicolor CDs from renewable lignin with unique groups (e.g., -OCH3, -OH and -COOH) and alterable moieties (e.g., ß-O-4, phenylpropanoid structure) remains challenging due to difficult-to-control molecular behavior. Herein we proposed a scalable acid-reagent strategy to engineer a family of heteroatom-doped multicolor lignin carbon dots (LCDs) that are functioned as the bimodal fluorescent off-on sensing of metal-ions and glutathione (GSH). Benefiting from the modifiable photophysical structure via heteroatom-doping (N, S, W, P and B), the multicolor LCDs (blue, green and yellow) with a controllable size distribution of 2.06-2.22 nm deliver the sensing competences to fluorometric probing the distinctive metal-ion systems (Fe3+, Al3+ and Cu2+) under a broad response interval (0-500 µM) with excellent sensitivity and limit of detection (LOD, 0.45-3.90 µM). Meanwhile, we found that the addition of GSH can efficiently restore the fluorescence of LCDs by forming a stable Fe3+-GSH complex with a LOD of 0.97 µM. This work not only sheds light on evolving lignin macromolecular interactions with tunable luminescent properties, but also provides a facile approach to synthesize multicolor CDs with advanced functionalities.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Lignina/química , Pontos Quânticos/química , Metais , Corantes Fluorescentes/química , Íons , Glutationa
12.
ACS Appl Mater Interfaces ; 15(17): 21066-21074, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37083353

RESUMO

Lithium (Li) metal is a promising anode for high-energy-density batteries; however, its practical viability is hampered by the unstable metal Li-electrolyte interface and Li dendrite growth. Herein, a mixed ion/electron conductive Li3N-Mo protective interphase with high mechanical stability is designed and demonstrated to stabilize the Li-electrolyte interface for a dendrite-free and ultrahigh-current-density metallic Li anode. The Li3N-Mo interphase is simultaneously formed and homogeneously distributed on the Li metal surface by the surface reaction between molten Li and MoN nanosheets powder. The highly ion-conductive Li3N and abundant Li3N/Mo grain boundaries facilitate fast Li-ion diffusion, while the electrochemically inert metal Mo cluster in the mosaic structure of Li3N-Mo inhibits the long-range crystallinity and regulates the Li-ion flux, further promoting the rate capability of the Li anode. The Li3N-Mo/Li electrode has a stable Li-electrolyte interface as manifested by a low Li overpotential of 12 mV and outstanding plating/stripping cyclability for over 3200 h at 1 mA cm-2. Moreover, the Li3N-Mo/Li anode inhibits Li dendrite formation and exhibits a long cycling life of 840 h even at 30 mA cm-2. The full cell assembled with LiFePO4 cathode exhibits stable cycling performance with 87.9% capacity retention for 200 cycles at 1C (1C = 170 mA g-1) as well as high rate capability of 83.7 mAh g-1 at 3C. The concept of constructing a mixed ion/electron conductive interphase to stabilize the Li-electrolyte interface for high-rate and dendrite-free Li metal anodes offers a viable strategy to develop high-performance Li-metal batteries.

13.
ACS Nano ; 17(23): 24227-24241, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992278

RESUMO

Developing advanced high voltage lithium-metal batteries (LMBs) with superior stability and intrinsic safety is of great significance for practical applications. However, the easy flammability of conventional carbonate solvents and inferior compatibility of commercial electrolytes for both highly reactive Li anodes and high-voltage cathodes severely hinder the implementation process. Hence, we rationally designed an intrinsically nonflammable and low-cost phosphate electrolyte toward stable high-voltage LMBs by bidirectionally modulating the interphases. Benefiting from the synergistic regulation of LiNO3 and DME dual-additives in the 1.5 M LiTFSI/Triethyl phosphate electrolyte, thin, dense and robust electrodes/electrolyte interphases were well constructed simultaneously on the surfaces of Li anode and Ni-rich cathode, dramatically improving the stability and compatibility between electrodes and electrolyte. Consequently, boosted kinetic and high Coulombic efficiency of 98.6% for Li metal plating/stripping over 400 cycles and superior cycling stability of exceeding 4,000 h in Li symmetric cell is achieved. More importantly, the Li∥LiNi0.6Mn0.2Co0.2O2 cell assembled with a thin Li anode and high mass-loading cathode at a high cutoff voltage of 4.6 V retains a 98.4% capacity retention after 500 cycles at 1C. This work affords a promising strategy to develop nonflammable electrolytes enabling the high safety, good cyclability, and low cost of high-energy LMBs.

14.
Dalton Trans ; 51(32): 12299-12306, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35899834

RESUMO

Transition metal oxide-based battery-type electrode materials with well-defined nanostructure have shown great potential in supercapacitors, due to their high electrical conductivity and superior redox activity. Herein, promising CoWO4@WO3-1 heterostructured nanosheets with rich oxygen vacancies are designed via a two-step in situ construction process and following thermal treatment. The CoWO4@WO3-1 heterostructured nanosheet arrays grown on a flexible carbon cloth substrate can provide an effective nanoporous framework, facilitate electrons/ions transport, and generate effective synergistic effect of high conductivity from WO3 and superior redox activity from CoWO4. As a result, the as-prepared CoWO4@WO3-1 electrodes exhibit a high area specific capacity of 578.6 mF cm-2 at a current density of 0.5 mA cm-2 and keep 98.38% capacity retention at 20 mA cm-2 over 30 000 cycles. Additionally, all-solid-state supercapacitors assembled with CoWO4@WO3-1 as cathodes and Ov-NiMoO4 as anodes show a maximum area energy density of 13.93 mW h cm-2 and power density of 6502.11 mW cm-2, keeping outstanding cycling stability of 98.1% capacity retention over 20 000 cycles.

15.
J Hazard Mater ; 435: 129072, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35650749

RESUMO

The rationally-designed lignocellulose valorization that promotes a novel "waste-treats-pollutant" standpoint is highly desired yet still challenging for the spread of biomass industry. At this point, a cascade technique with the assistance of deep eutectic solvent (DES) fractionation is tailored to dually valorize wheat straw into fluorescent lignin carbon dots (LCDs) and bimetallic Mg-Fe oxide-decorated biochar (MBC) via solvothermal engineering and co-precipitation/pyrolysis respectively. Benefitting from the abundance of ß-aryl ether and hydroxyl groups in DES-extracted lignin, the photoluminescence LCDs emit blue color in a wide excitation span, which can be adopted to selectively detect ferric ions (Fe3+) in a broad dosage scale with a highly linear correlation of 10-50 µM. Taking advantages of the MBC-aided persulfate activation, we propose the efficient arbidol removal system with a universal concentration of 20-200 ppm in the scalable pH ranging from 3 to 11. The dominate migration pathways involving with active oxygen species and surface electron transfer are comprehensively studied via electron paramagnetic resonance, radical-quenching experiments, and theoretical arithmetic. With the endeavor of biorefineries, this full-scale platform ignites the dazzling wildfire from dual lignocellulose valorization that will also seek its accurate position in the kingdoms of functional materials and wastewater restoration.


Assuntos
Poluentes Ambientais , Lignina , Carbono , Carvão Vegetal , Ferro
16.
J Mater Chem B ; 10(44): 9249-9257, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36321642

RESUMO

Incomplete tumor ablation and subsequent tumor metastasis usually occur during photothermal anti-tumor processes. The combination of photothermal and immunotherapy has proven to be a promising method to conquer technical challenges. Inhibiting the programmed death ligand-1 (PD-L1)/programmed cell death protein 1 (PD-1) immune pathway represents one of the most successful immunotherapy strategies. Whereas, the PD-L1 expression level significantly differs, leading to a relatively low response rate to the immune checkpoint blockade (ICB) approaches. Therefore, improving the expression level of PD-L1 becomes one potential method to enhance the response rate. Herein, NIH 3T3 cells were educated to steadily express PD-1 protein. Furthermore, the synthesized molybdenum nitride was then coated with PD-1 protein-modified cytomembrane, which endows it with immune checkpoint blocking capability. Moreover, under the irradiation of near-infrared light, the local mild heat released from the molybdenum nitride causes the apoptosis of tumor cells. More importantly, the elevated temperature simultaneously helps elevate the expression level of PD-L1, further enhancing the response rate of ICB. Finally, the PD-1 cytomembrane coatings interact with the upregulated PD-L1, leading to the activation of the immune system. In summary, we confirmed that the PD-1 protein-coated molybdenum nitride could synergistically ablate tumors and avoid metastasis.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Camundongos , Animais , Humanos , Feminino , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias da Mama/terapia , Molibdênio/farmacologia , Imunoterapia , Fatores Imunológicos
17.
Sci Bull (Beijing) ; 67(17): 1763-1775, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546062

RESUMO

Anodic urea oxidation reaction (UOR) is an intriguing half reaction that can replace oxygen evolution reaction (OER) and work together with hydrogen evolution reaction (HER) toward simultaneous hydrogen fuel generation and urea-rich wastewater purification; however, it remains a challenge to achieve overall urea electrolysis with high efficiency. Herein, we report a multifunctional electrocatalyst termed as Rh/NiV-LDH, through integration of nickel-vanadium layered double hydroxide (LDH) with rhodium single-atom catalyst (SAC), to achieve this goal. The electrocatalyst delivers high HER mass activity of 0.262 A mg-1 and exceptionally high turnover frequency (TOF) of 2.125 s-1 at an overpotential of 100 mV. Moreover, exceptional activity toward urea oxidation is addressed, which requires a potential of 1.33 V to yield 10 mA cm-2, endorsing the potential to surmount the sluggish OER. The splendid catalytic activity is enabled by the synergy of the NiV-LDH support and the atomically dispersed Rh sites (located on the Ni-V hollow sites) as evidenced both experimentally and theoretically. The self-supported Rh/NiV-LDH catalyst serving as the anode and cathode for overall urea electrolysis (1 mol L-1 KOH with 0.33 mol L-1 urea as electrolyte) only requires a small voltage of 1.47 V to deliver 100 mA cm-2 with excellent stability. This work provides important insights into multifunctional SAC design from the perspective of support sites toward overall electrolysis applications.


Assuntos
Eletrólise , Ureia , Nitrogênio da Ureia Sanguínea , Hidrogênio , Hidróxidos , Oxigênio
18.
Research (Wash D C) ; 2022: 9837109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935128

RESUMO

Electrocatalytic urea oxidation reaction (UOR) is regarded as an effective yet challenging approach for the degradation of urea in wastewater into harmless N2 and CO2. To overcome the sluggish kinetics, catalytically active sites should be rationally designed to maneuver the multiple key steps of intermediate adsorption and desorption. Herein, we demonstrate that metal-organic frameworks (MOFs) can provide an ideal platform for tailoring binary active sites to facilitate the rate-determining steps, achieving remarkable electrocatalytic activity toward UOR. Specifically, the MOF (namely, NiMn0.14-BDC) based on Ni/Mn sites and terephthalic acid (BDC) ligands exhibits a low voltage of 1.317 V to deliver a current density of 10 mA cm-2. As a result, a high turnover frequency (TOF) of 0.15 s-1 is achieved at a voltage of 1.4 V, which enables a urea degradation rate of 81.87% in 0.33 M urea solution. The combination of experimental characterization with theoretical calculation reveals that the Ni and Mn sites play synergistic roles in maneuvering the evolution of urea molecules and key reaction intermediates during the UOR, while the binary Ni/Mn sites in MOF offer the tunability for electronic structure and d-band center impacting on the intermediate evolution. This work provides important insights into active site design by leveraging MOF platform and represents a solid step toward highly efficient UOR with MOF-based electrocatalysts.

19.
Anal Chem ; 83(21): 8138-44, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21928805

RESUMO

Electrode fouling and passivation are the main reasons for attenuated signals as well as reduced sensitivity and selectivity over time in electrochemical analysis. We report here a refreshable electrode composed of carbon-doped TiO(2) nanotube arrays (C-doped TiO(2)-NTAs), which not only has excellent electrochemical activity for simultaneous determination of 5-hydroxytryptamine and ascorbic acid but also can be easily photocatalytically refreshed to maintain the high selectivity and sensitivity. The C-doped TiO(2)-NTAs are fabricated by rapid annealing of as-anodized TiO(2)-NTAs in argon. The residual ethylene glycol absorbed on the nanotube wall acts as the carbon source and no foreign carbon precursor is thus needed. The morphology, structure, and composition the C-doped TiO(2)-NTAs are determined, and the corresponding doping mechanism is investigated by thermal analysis and in situ mass spectroscopy. Because of the high photocatalytic activity of the C-doped TiO(2)-NTAs electrode, the electrode surface can be readily regenerated by ultraviolet or visible light irradiation. This photoassisted regenerating technique does not damage the electrode microstructure while rendering high reproducibility and stability.


Assuntos
Técnicas Biossensoriais , Carbono/química , Técnicas Eletroquímicas , Nanotubos , Titânio/química , Catálise , Sensibilidade e Especificidade
20.
Chemistry ; 17(51): 14552-8, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22106043

RESUMO

Quasi-aligned cylindrical and conical core-shell nanofibers consisting of carbon shells and TiO(2) nanowire cores are produced in situ on Ti foils without using a foreign metallic catalyst and template. A cylindrical nanofiber has a TiO(2) nanowire core 30-50 nm in diameter and a 5-10 nm-thick cylindrical carbon shell, while in the conical nanostructure the TiO(2) nanowire core has a diameter of 20-40 nm and the thickness of the carbon shell varies from about 200 nm at the bottom to about 5 nm at the tip. Electrochemical analysis reveals well-defined redox peaks of the [Fe(CN)(6)](3-/4-) redox couple and heterogeneous charge-transfer rate constants of 0.010 and 0.062 cm s(-1) for the cylindrical and conical nanofibers, respectively. The coverage of exposed edge planes on the cylindrical and conical carbon shells is estimated to be 2.5 and 15.5 % respectively. The more abundant exposed edge planes on the conical nanofiber decrease the overpotential and increase the voltammetric resolution during electrochemical detection of uric acid and ascorbic acid. Our results suggest that the density of edge-plane sites estimated from Raman scattering is not necessarily equal to the density of exposed edge-plane sites, and only carbon electrodes with a large density of exposed edge planes or free graphene sheet ends exhibit better electrochemical performance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa