Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38734936

RESUMO

Rheumatoid arthritis (RA) is an idiopathic and chronic autoimmune disease for which there are currently no effective treatments. Oxypeucedanin hydrate (OXH) is a natural coumarin known for its potent anti-inflammatory properties. However, further investigations are needed to determine its therapeutic efficacy in treating RA. In this study, we evaluate the anti-inflammatory activity of OXH by treating LPS-induced RAW264.7 macrophages. Our results show that OXH treatment reverses the changes in iNOS, COX-2, IL-1ß, IL-6, and TNF-α levels. Additionally, OXH reduces ROS production. Further analysis reveals that OXH suppresses the activation of the NF-κB/MAPK pathway. CETSA results show that OXH competes with LPS for binding to the TLR4/MD2 complex. MST experiments demonstrate the specific affinity of OXH for the TLR4/MD2 complex, with a Kd value of 33.7 µM. Molecular docking analysis suggests that OXH binds to the pocket of the TLR4/MD2 complex and interacts with specific amino acids, such as GLY-343, LYS-388, and PHE-345. Molecular dynamics simulations further confirm this conclusion. Finally, we investigate the potential of OXH in treating RA using a collagen-induced arthritis (CIA) model in rats. OXH effectively ameliorates the symptoms of CIA, including improving body weight, reducing swelling and redness, increasing talus volume, and decreasing bone erosion. OXH also decreases the mRNA levels of pro-inflammatory factors in synovial tissue. Transcriptome enrichment analysis and western blot analysis confirm that OXH suppresses the NF-κB/MAPK pathway, which is consistent with our in vitro findings.

2.
J Asian Nat Prod Res ; : 1-13, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373692

RESUMO

Three previously undescribed coumarins (1-3) were obtained from the roots of Notopterygium incisum. Their chemical structures were elucidated using a variety of spectroscopic techniques and chemical calculations. The inhibitory effects of these new compounds on NO production and pro-inflammatory factors (IL-1ß, IL-6, and TNF-α) in LPS-stimulated RAW 264.7 cells were investigated. Further studies revealed that compound 1 suppressed the expression of COX-2 and iNOS while also reduced ROS accumulation. Western blot analysis demonstrated that compound 1 could inhibit the PI3K/AKT pathway by decreasing the levels of p-PI3K and p-AKT. Collectively, these findings suggest that compounds 1-3 exhibit promising anti-inflammatory properties.

3.
J Nat Prod ; 85(6): 1474-1485, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35696541

RESUMO

Transcriptome analysis is shown to be an effective strategy to understand the potential function of natural products. Here, it is reported that 11 previously undescribed hydroanthraquinones [nigroquinones A-K (1-11)], along with eight known congeners, were isolated from Nigrospora sphaerica. Their structures were elucidated by interpreting spectroscopic and spectrometric data including high-resolution mass spectra and nuclear magnetic resonance. The absolute configurations of 1-11 were confirmed by electronic circular dichroism calculations. Transcriptome analysis revealed that 3 (isolated in the largest amount) might be anti-inflammatory. Assays based on LPS-induced RAW264.7 macrophages and zebrafish embryos confirmed that some of the isolated hydroanthraquinones attenuated the secretion of pro-inflammatory mediators in vitro and in vivo. Further Western blotting and immunofluorescence experiments indicated that 4 (which showed the most obvious nitric oxide inhibition) could suppress the expression of nuclear factor-kappa-B (NF-κB), phosphorylation of the inhibitor of NF-κB kinase and inhibit the transportation of NF-κB to the nucleus. Hence, the suppression of the NF-κB signaling pathway may be responsible for the anti-inflammatory effect. These results show that bioactivity evaluation on the basis of transcriptome analysis may be effective in the functional exploration of natural products.


Assuntos
Produtos Biológicos , NF-kappa B , Animais , Anti-Inflamatórios/farmacologia , Ascomicetos , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Peixe-Zebra
4.
Acta Biochim Biophys Sin (Shanghai) ; 55(1): 23-33, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36017888

RESUMO

Neuroinflammation mediated by microglia is an important pathophysiological mechanism in neurodegenerative diseases. However, there is a lack of effective drugs to treat neuroinflammation. N-acetyldopamine dimer (NADD) is a natural compound from the traditional Chinese medicine Isaria cicada. In our previous study, we found that NADD can attenuate DSS-induced ulcerative colitis by suppressing the NF-κB and MAPK pathways. Does NADD inhibit neuroinflammation, and what is the target of NADD? To answer this question, lipopolysaccharide (LPS)-stimulated BV-2 microglia was used as a cell model to investigate the effect of NADD on neuroinflammation. Nitric oxide (NO) detection, reactive oxygen species (ROS) detection and enzyme-linked immunosorbent assay (ELISA) results show that NADD attenuates inflammatory signals and proinflammatory cytokines in LPS-stimulated BV-2 microglia, including NO, ROS, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and interleukin-6 (IL-6). Western blot analysis show that NADD inhibits the protein levels of Toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), ASC and cysteinyl aspartate specific proteinase (Caspase)-1, indicating that NADD may inhibit neuroinflammation through the TLR4/NF-κB and NLRP3/Caspase-1 signaling pathways. In addition, surface plasmon resonance assays and molecular docking demonstrate that NADD binds with TLR4 directly. Our study reveals a new role of NADD in inhibiting the TLR4/NF-κB and NLRP3/Caspase-1 pathways, and shows that TLR4-MD2 is the direct target of NADD, which may provide a potential therapeutic candidate for the treatment of neuroinflammation.


Assuntos
NF-kappa B , Receptor 4 Toll-Like , Humanos , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Aspártico/metabolismo , Doenças Neuroinflamatórias , Peptídeo Hidrolases/metabolismo , Lipopolissacarídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Simulação de Acoplamento Molecular , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Caspases/metabolismo , Microglia/metabolismo
5.
Phytomedicine ; 120: 155052, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717310

RESUMO

BACKGROUND: Ulcerative colitis (UC) accounts for the untreatable illness nowadays. Bloody stools are the primary symptom of UC, and the first-line drugs used to treat UC are associated with several drawbacks and negative side effects. S. officinalis has long been used as a medicine to treat intestinal infections and bloody stools. However, what the precise molecular mechanism, the exact etiology, and the material basis of the disease remain unclear. PURPOSE: This work aimed to comprehensively explore pharmacological effects as well as molecular mechanisms underlying the active fraction of S. officinalis, and to produce a comprehensive and brand-new guideline map of its chemical base and mechanism of action. METHODS: First, different polarity S. officinalis extracts were orally administered to the DSS-induced UC model mice for the sake of investigating its active constituents. Using the UPLC-orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap-HRMS) technique, the most active S. officinalis (S. officinalis ethyl acetate fraction, SOEA) extract was characterized. Subsequently, the effectiveness of its active fraction on UC was evaluated through phenotypic observation (such as weight loss, colon length, and stool characteristics), and histological examination of pathological injuries, mRNA and protein expression. Cell profile, cell-cell interactions and molecular mechanisms of SOEA in different cell types of the colon tissue from UC mice were described using single-cell RNA sequencing (scRNA-seq). As a final step, the molecular mechanisms were validated by appropriate molecular biological methods. RESULTS: For the first time, this study revealed the significant efficacy of SOEA in the treatment of UC. SOEA reduced DAI and body weight loss, recovered the colon length, and mitigated colonic pathological injuries along with mucosal barrier by promoting goblet cell proliferation. Following treatment with SOEA, inflammatory factors showed decreased mRNA and protein expression. SOEA restored the dynamic equilibrium of cell profile and cell-cell interactions in colon tissue. All of these results were attributed to the ability of SOEA to inhibit the PI3K-AKT/NF-κB/STATAT pathway. CONCLUSIONS: By integrating the chemical information of SOEA derived from UPLC-Q-Orbitrap-HRMS with single-cell transcriptomic data extracted from scRNA-seq, this study demonstrates that SOEA exerts the therapeutic effect through suppressing PI3K-AKT/NF-B/STAT3 pathway to improve clinical symptoms, inflammatory response, mucosal barrier, and intercellular interactions in UC, and effectively eliminates the interference of cellular heterogeneity.


Assuntos
Colite Ulcerativa , Sanguisorba , Animais , Camundongos , NF-kappa B , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Análise de Sequência de RNA
6.
Front Microbiol ; 13: 999996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081795

RESUMO

Excessive inflammation causes chronic diseases and tissue damage. Although there has been drug treatment, its side effects are relatively large. Searching for effective anti-inflammatory drugs from natural products has become the focus of attention. First isolated from Trichoderma longibraciatum, trichodimerol is a natural product with TNF inhibition. In this study, lipopolysaccharide (LPS)-induced RAW264.7 macrophages were used as a model to investigate the anti-inflammatory activity of trichodimerol. The results of nitric oxide (NO) detection, enzyme-linked immunosorbent assay (ELISA), and reactive oxygen species (ROS) showed that trichodimerol could reduce the production of NO, ROS, and the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α. Western blotting results showed that trichodimerol could inhibit the production of inflammatory mediators such as cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) and the protein expression of nuclear transcription factor-kappaB (NF-κB), p-IKK, p-IκB, Toll-like receptor 4 (TLR4), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), cysteinyl aspartate specific proteinase (Caspase)-1, and ASC, which indicated that trichodimerol may inhibit inflammation through the NF-κB and NLRP3 pathways. At the same time, molecular docking showed that trichodimerol can directly combine with the TLR4-MD2 complex. Hence, trichodimerol inhibits inflammation by obstructing the interaction between LPS and the TLR4-MD2 heterodimer and suppressing the downstream NF-κB and NLRP3 pathways.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa