Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(16): 7341-7349, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37506062

RESUMO

Effective tumor regression has been observed with chimeric antigen receptor (CAR) T cells; however, the development of an affordable, safe, and effective CAR-T cell treatment remains a challenge. One of the major obstacles is that the suboptimal genetic modification of T cells reduces their yield and antitumor activity, necessitating the development of a next-generation T cell engineering approach. In this study, we developed a nonviral T cell nanoengineering system that allows highly efficient delivery of diverse functional nanomaterials into primary human T cells in a genetically stable and scalable manner. Our platform leverages the unique cell deformation and restoration process induced by the intrinsic inertial flow in a microchannel to create nanopores in the cellular membrane for macromolecule internalization, leading to effective transfection with high scalability and viability. The proposed approach demonstrates considerable potential as a practical alternative technique for improving the current CAR-T cell manufacturing process.


Assuntos
Imunoterapia Adotiva , Linfócitos T , Humanos , Imunoterapia Adotiva/métodos , Transfecção , Receptores de Antígenos de Linfócitos T/genética
2.
Adv Sci (Weinh) ; 8(15): e2004595, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34096197

RESUMO

Innate cell function can be artificially engineered and reprogrammed by introducing biomolecules, such as DNAs, RNAs, plasmid DNAs, proteins, or nanomaterials, into the cytosol or nucleus. This process of delivering exogenous cargos into living cells is referred to as intracellular delivery. For instance, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing begins with internalizing Cas9 protein and guide RNA into cells, and chimeric antigen receptor-T (CAR-T) cells are prepared by delivering CAR genes into T lymphocytes for cancer immunotherapies. To deliver external biomolecules into cells, tools, including viral vectors, and electroporation have been traditionally used; however, they are suboptimal for achieving high levels of intracellular delivery while preserving cell viability, phenotype, and function. Notably, as emerging solutions, microfluidic and nanofluidic approaches have shown remarkable potential for addressing this open challenge. This review provides an overview of recent advances in microfluidic and nanofluidic intracellular delivery strategies and discusses new opportunities and challenges for clinical applications. Furthermore, key considerations for future efforts to develop microfluidics- and nanofluidics-enabled next-generation intracellular delivery platforms are outlined.


Assuntos
Edição de Genes/métodos , Técnicas de Transferência de Genes , Terapia Genética/métodos , Microfluídica/métodos , Nanotecnologia/métodos , Humanos
3.
ACS Nano ; 15(8): 12888-12898, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34142817

RESUMO

Whole-cell-based therapy has been extensively used as an effective disease treatment approach, and it has rapidly changed the therapeutic paradigm. To fully accommodate this shift, advances in genome modification and cell reprogramming methodologies are critical. Traditionally, molecular tools such as viral and polymer nanocarriers and electroporation have been the norm for internalizing external biomolecules into cells for cellular engineering. However, these approaches are not fully satisfactory considering their cytotoxicity, high cost, low scalability, and/or inconsistent and ineffective delivery and transfection. To address these challenges, we present an approach that leverages droplet microfluidics with cell mechanoporation, bringing intracellular delivery to the next level. In our approach, cells and external cargos such as mRNAs and plasmid DNAs are coencapsulated into droplets, and as they pass through a series of narrow constrictions, the cell membrane is mechanically permeabilized where the cargos in the vicinity are internalized via convective solution exchange enhanced by recirculation flows developed in the droplets. Using this principle, we demonstrated a high level of functional macromolecule delivery into various immune cells, including human primary T cells. By utilizing droplets, the cargo consumption was drastically reduced, and near-zero clogging was realized. Furthermore, high scalability without sacrificing cell viability and superior delivery over state-of-the-art methods and benchtop techniques were demonstrated. Notably, the droplet-based intracellular delivery strategy presented here can be further applied to other mechanoporation microfluidic techniques, highlighting its potential for cellular engineering and cell-based therapies.


Assuntos
Eletroporação , Linfócitos T , Humanos , Transfecção , Microfluídica/métodos , Engenharia Celular
4.
ACS Nano ; 14(11): 15094-15106, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33034446

RESUMO

Cell therapy and cellular engineering begin with internalizing synthetic biomolecules and functional nanomaterials into primary cells. Conventionally, electroporation, lipofection, or viral transduction has been used; however, these are limited by their cytotoxicity, low scalability, cost, and/or preparation complexity, especially in primary cells. Thus, a universal intracellular delivery method that outperforms the existing methods must be established. Here, we present a versatile intracellular delivery platform that leverages intrinsic inertial flow developed in a T-junction microchannel with a cavity. The elongational recirculating flows exerted in the channel substantially stretch the cells, creating discontinuities on cell membranes, thereby enabling highly effective internalization of nanomaterials, such as plasmid DNA (7.9 kbp), mRNA, siRNA, quantum dots, and large nanoparticles (300 nm), into different cell types, including hard-to-transfect primary stem and immune cells. We identified that the internalization mechanism of external cargos during the cell elongation-restoration process is achieved by both passive diffusion and convection-based rapid solution exchange across the cell membrane. Using fluidic cell mechanoporation, we demonstrated a transfection yield superior to that of other state-of-the-art microfluidic platforms as well as current benchtop techniques, including lipofectamine and electroporation. In summary, the intracellular delivery platform developed in the present study enables a high delivery efficiency (up to 98%), easy operation (single-step), low material cost (<$1), high scalability (1 × 106 cells/min), minimal cell perturbation (up to 90%), and cell type/cargo insensitive delivery, providing a practical and robust approach anticipated to critically impact cell-based research.


Assuntos
Técnicas de Transferência de Genes , Microfluídica , Eletroporação , Terapia Genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa