Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cell ; 180(4): 603-604, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32084338

RESUMO

In this issue of Cell, two papers report agonist-bound cryo-EM structures of the cannabinoid receptor, CB2, in complex with Gi. Importantly, beyond providing information that could help distinguish CB2 ligand binding from CB1, these structures support the existence of a nucleotide-free state during G-protein signaling.


Assuntos
Canabinoides , Receptor CB2 de Canabinoide , Microscopia Crioeletrônica , Proteínas de Ligação ao GTP , Humanos , Transdução de Sinais
2.
J Chem Inf Model ; 61(12): 5742-5746, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34780173

RESUMO

The capsaicin receptor, transient receptor potential vanilloid type 1 (TRPV1), is a polymodal channel that has been implicated in the perception of pain and can be modulated by a variety of cannabinoid ligands. Here we report TRPV1 channel activation by the endocannabinoid, anandamide (AEA), in a unique, peripheral binding site via extended MD simulations. These results aim to expand the understanding of TRPV1 and assist in the development of new TRPV1 modulators.


Assuntos
Moduladores de Receptores de Canabinoides , Endocanabinoides , Ácidos Araquidônicos/farmacologia , Moduladores de Receptores de Canabinoides/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Canais de Cátion TRPV
3.
Molecules ; 25(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046081

RESUMO

GPR6 is an orphan G protein-coupled receptor that has been associated with the cannabinoid family because of its recognition of a sub-set of cannabinoid ligands. The high abundance of GPR6 in the central nervous system, along with high constitutive activity and a link to several neurodegenerative diseases make GPR6 a promising biological target. In fact, diverse research groups have demonstrated that GPR6 represents a possible target for the treatment of neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. Several patents have claimed the use of a wide range of pyrazine derivatives as GPR6 inverse agonists for the treatment of Parkinson's disease symptoms and other dyskinesia syndromes. However, the full pharmacological importance of GPR6 has not yet been fully explored due to the lack of high potency, readily available ligands targeting GPR6. The long-term goal of the present study is to develop such ligands. In this paper, we describe our initial steps towards this goal. A human GPR6 homology model was constructed using a suite of computational techniques. This model permitted the identification of unique GPR6 structural features and the exploration of the GPR6 binding crevice. A subset of patented pyrazine analogs were docked in the resultant GPR6 inactive state model to validate the model, rationalize the structure-activity relationships from the reported patents and identify the key residues in the binding crevice for ligand recognition. We will take this structural knowledge into the next phase of GPR6 project, in which scaffold hopping will be used to design new GPR6 ligands.


Assuntos
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Homologia Estrutural de Proteína , Sequência de Aminoácidos , Sítios de Ligação , Canabinoides/metabolismo , Humanos , Ligantes , Modelos Químicos , Simulação de Dinâmica Molecular , Doenças Neurodegenerativas/metabolismo , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 20(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075933

RESUMO

The orphan G-protein coupled receptor (GPCR), GPR18, has been recently proposed as a potential member of the cannabinoid family as it recognizes several endogenous, phytogenic, and synthetic cannabinoids. Potential therapeutic applications for GPR18 include intraocular pressure, metabolic disorders, and cancer. GPR18 has been reported to have high constitutive activity, i.e., activation/signaling occurs in the absence of an agonist. This activity can be reduced significantly by the A3.39N mutation. At the intracellular (IC) ends of (transmembrane helices) TMH3 and TMH6 in GPCRs, typically, a pair of oppositely charged amino acids form a salt bridge called the "ionic lock". Breaking of this salt bridge creates an IC opening for coupling with G protein. The GPR18 "ionic lock" residues (R3.50/S6.33) can form only a hydrogen bond. In this paper, we test the hypothesis that the high constitutive activity of GPR18 is due to the weakness of its "ionic lock" and that the A3.39N mutation strengthens this lock. To this end, we report molecular dynamics simulations of wild-type (WT) GPR18 and the A3.39N mutant in fully hydrated (POPC) phophatidylcholine lipid bilayers. Results suggest that in the A3.39N mutant, TMH6 rotates and brings R3.50 and S6.33 closer together, thus strengthening the GPR18 "ionic lock".


Assuntos
Modelos Moleculares , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Íons , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/química , Sódio/química
5.
Biochemistry ; 56(3): 473-486, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28005346

RESUMO

GPR55 is a newly deorphanized class A G-protein-coupled receptor that has been implicated in inflammatory pain, neuropathic pain, metabolic disorder, bone development, and cancer. Few potent GPR55 ligands have been identified to date. This is largely due to an absence of information about salient features of GPR55, such as residues important for signaling and residues implicated in the GPR55 signaling cascade. The goal of this work was to identify residues that are key for the signaling of the GPR55 endogenous ligand, l-α-lysophosphatidylinositol (LPI), as well as the signaling of the GPR55 agonist, ML184 {CID 2440433, 3-[4-(2,3-dimethylphenyl)piperazine-1-carbonyl]-N,N-dimethyl-4-pyrrolidin-1-ylbenzenesulfonamide}. Serum response element (SRE) and serum response factor (SRF) luciferase assays were used as readouts for studying LPI and ML184 signaling at the GPR55 mutants. A GPR55 R* model based on the recent δ-opioid receptor (DOR) crystal structure was used to interpret the resultant mutation data. Two residues were found to be crucial for agonist signaling at GPR55, K2.60 and E3.29, suggesting that these residues form the primary interaction site for ML184 and LPI at GPR55. Y3.32F, H(170)F, and F6.55A/L mutation results suggested that these residues are part of the orthosteric binding site for ML184, while Y3.32F and H(170)F mutation results suggest that these two residues are part of the LPI binding pocket. Y3.32L, M3.36A, and F6.48A mutation results suggest the importance of a Y3.32/M3.36/F6.48 cluster in the GPR55 signaling cascade. C(10)A and C(260)A mutations suggest that these residues form a second disulfide bridge in the extracellular domain of GPR55, occluding ligand extracellular entry in the TMH1-TMH7 region of GPR55. Taken together, these results provide the first set of discrete information about GPR55 residues important for LPI and ML184 signaling and for GPR55 activation. This information should aid in the rational design of next-generation GPR55 ligands and the creation of the first high-affinity GPR55 radioligand, a tool that is sorely needed in the field.


Assuntos
Lisofosfolipídeos/química , Piperazinas/química , Pirrolidinas/química , Receptores Acoplados a Proteínas G/química , Proteínas Recombinantes de Fusão/química , Elemento de Resposta Sérica , Motivos de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Expressão Gênica , Células HEK293 , Humanos , Cinética , Ligantes , Lisofosfolipídeos/farmacologia , Simulação de Acoplamento Molecular , Mutação , Piperazinas/farmacologia , Ligação Proteica , Pirrolidinas/farmacologia , Receptores de Canabinoides , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides delta/química , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fator de Resposta Sérica/química , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Glycine max , Homologia Estrutural de Proteína , Termodinâmica
6.
Bioorg Med Chem Lett ; 27(3): 612-615, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27989666

RESUMO

The first structure-activity relationships for a benzothiazole scaffold acting as an antagonist at GPR35 is presented. Analogues were designed based on a lead compound that was previously determined to have selective activity as a GPR35 antagonist. The synthetic route was modular in nature to independently explore the role of the middle and both ends of the scaffold. The activities of the analogues illustrate the importance of all three segments of the compound.


Assuntos
Benzotiazóis/química , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Benzotiazóis/síntese química , Benzotiazóis/metabolismo , Linhagem Celular Tumoral , Humanos , Concentração Inibidora 50 , Ligação Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
7.
Bioorg Med Chem ; 25(16): 4355-4367, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28673732

RESUMO

GPR55, a G protein-coupled receptor, is an attractive target to alleviate inflammatory and neuropathic pain and treat osteoporosis and cancer. Identifying a potent and selective ligand will aid to further establish the specific physiological roles and pharmacology of the receptor. Towards this goal, a targeted library of 22 compounds was synthesized in a modular fashion to obtain structure-activity relationship information. The general route consisted of coupling a variety of p-aminophenyl sulfonamides to isothiocyanates to form acylthioureas. For the synthesis of a known naphthyl ethyl alcohol motif, route modification led to a shorter and more efficient process. The 22 analogues were analyzed for their ability to serve as agonists at GPR55 and valuable information for both ends of the molecule was ascertained.


Assuntos
Desenho de Fármacos , Receptores Acoplados a Proteínas G/agonistas , Tioureia/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Receptores de Canabinoides , Relação Estrutura-Atividade , Tioureia/análogos & derivados , Tioureia/síntese química
8.
Biotechnol Lett ; 39(2): 311-321, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27864654

RESUMO

OBJECTIVE: To develop a model for binding and catalysis associated with the stimulation of 4-fluorophenol (4-FP) oxidation in the presence of long chain aldehydes by the enzymatic catalyst, cytochrome P450BM3-F87G. RESULTS: A variation of the Michaeli-Menten kinetic model was employed to describe interactions at the active site of the enzyme, along with computer aided modeling approaches. In addition to the hydroquinone product arising from de-fluorination of 4-FP, a second product (p-fluorocatechol) was also observed and, like the hydroquinone, its rate of formation increased in the presence of the aldehyde. When only aldehyde was present with the enzyme, BM3-F87G catalyzed its oxidation to the corresponding carboxylic acid; however, this activity was inhibited when 4-FP was added to the reaction. A 3D computer model of the active site containing both aldehyde and 4-FP was generated, guided by these kinetic observations. Finally, partitioning between the two phenolic products was examined with an emphasis on the conditions directing the initial epoxidation at either the 2,3- or 3,4-positions on the substrate. Temperature, reaction time, substrate concentration, and the structure of the aldehyde had no substantial effect on the overall product ratios, however the NADPH coupling efficiency decreased when unsaturated aldehydes were included, or when the temperature of the reaction was reduced. CONCLUSIONS: The unsaturated aldehyde, trans-2-decenal, stimulates BM3-F87G catalyzed oxidation of 4-fluorophenol through a cooperative active site binding mode that doesn't influence product distributions or coupling efficiencies, while 4-fluorophenol acts as a competitive inhibitor of aldehyde oxidation.


Assuntos
Aldeídos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fenóis/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Cinética
9.
J Neurosci ; 35(41): 13975-88, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26468198

RESUMO

Adolescence is characterized by drastic behavioral adaptations and comprises a particularly vulnerable period for the emergence of various psychiatric disorders. Growing evidence reveals that the pathophysiology of these disorders might derive from aberrations of normal neurodevelopmental changes in the adolescent brain. Understanding the molecular underpinnings of adolescent behavior is therefore critical for understanding the origin of psychopathology, but the molecular mechanisms that trigger adolescent behavior are unknown. Here, we hypothesize that the cannabinoid type-1 receptor (CB1R) may play a critical role in mediating adolescent behavior because enhanced endocannabinoid (eCB) signaling has been suggested to occur transiently during adolescence. To study enhanced CB1R signaling, we introduced a missense mutation (F238L) into the rat Cnr1 gene that encodes for the CB1R. According to our hypothesis, rats with the F238L mutation (Cnr1(F238L)) should sustain features of adolescent behavior into adulthood. Gain of function of the mutated receptor was demonstrated by in silico modeling and was verified functionally in a series of biochemical and electrophysiological experiments. Mutant rats exhibit an adolescent-like phenotype during adulthood compared with wild-type littermates, with typical high risk/novelty seeking, increased peer interaction, enhanced impulsivity, and augmented reward sensitivity for drug and nondrug reward. Partial inhibition of CB1R activity in Cnr1(F238L) mutant rats normalized behavior and led to a wild-type phenotype. We conclude that the activity state and functionality of the CB1R is critical for mediating adolescent behavior. These findings implicate the eCB system as an important research target for the neuropathology of adolescent-onset mental health disorders. SIGNIFICANCE STATEMENT: We present the first rodent model with a gain-of-function mutation in the cannabinoid type-1 receptor (CB1R). Adult mutant rats exhibit an adolescent-like phenotype with typical high risk seeking, impulsivity, and augmented drug and nondrug reward sensitivity. Adolescence is a critical period for suboptimal behavioral choices and the emergence of neuropsychiatric disorders. Understanding the basis of these disorders therefore requires a comprehensive knowledge of how adolescent neurodevelopment triggers behavioral reactions. Our behavioral observations in adult mutant rats, together with reports on enhanced adolescent CB1R signaling, suggest a pivotal role for the CB1R in an adolescent brain as an important molecular mediator of adolescent behavior. These findings implicate the endocannabinoid system as a notable research target for adolescent-onset mental health disorders.


Assuntos
Comportamento do Adolescente/fisiologia , Comportamento Animal/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Adolescente , Fatores Etários , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Antagonistas de Receptores de Canabinoides/farmacologia , Cocaína/administração & dosagem , Corpo Estriado/citologia , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Humanos , Técnicas In Vitro , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Modelos Animais , Mutação/genética , Cintilografia , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos , Receptor CB1 de Canabinoide/genética , Assunção de Riscos , Comportamento Social , Isótopos de Enxofre/farmacocinética
10.
Bioorg Med Chem Lett ; 26(7): 1827-1830, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26916440

RESUMO

A series of 1,3,4-oxadiazol-2-ones was synthesized and tested for activity as antagonists at GPR55 in cellular beta-arrestin redistribution assays. The synthesis was designed to be modular in nature so that a sufficient number of analogues could be rapidly accessed to explore initial structure-activity relationships. The design of analogues was guided by the docking of potential compounds into a model of the inactive form of GPR55. The results of the assays were used to learn more about the binding pocket of GPR55. With this oxadiazolone scaffold, it was determined that modification of the aryl group adjacent to the oxadiazolone ring was often detrimental and that the distal cyclopropane was beneficial for activity. These results will guide further exploration of this receptor.


Assuntos
Desenho de Fármacos , Oxidiazóis/química , Oxidiazóis/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Arrestinas/metabolismo , Células CHO , Cricetulus , Humanos , Simulação de Acoplamento Molecular , Oxidiazóis/síntese química , Piperidinas/síntese química , Receptores de Canabinoides , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa