Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Proteome Res ; 17(4): 1361-1374, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29464956

RESUMO

Indole-3-acetic acid (IAA) plays a central role in plant growth and development, and many plant-associated microbes produce IAA using tryptophan as the precursor. Using genomic analyses, we predicted that Pantoea sp. YR343, a microbe isolated from Populus deltoides, synthesizes IAA using the indole-3-pyruvate (IPA) pathway. To better understand IAA biosynthesis and the effects of IAA exposure on cell physiology, we characterized proteomes of Pantoea sp. YR343 grown in the presence of tryptophan or IAA. Exposure to IAA resulted in upregulation of proteins predicted to function in carbohydrate and amino acid transport and exopolysaccharide (EPS) biosynthesis. Metabolite profiles of wild-type cells showed the production of IPA, IAA, and tryptophol, consistent with an active IPA pathway. Finally, we constructed an Δ ipdC mutant that showed the elimination of tryptophol, consistent with a loss of IpdC activity, but was still able to produce IAA (20% of wild-type levels). Although we failed to detect intermediates from other known IAA biosynthetic pathways, this result suggests the possibility of an alternate pathway or the production of IAA by a nonenzymatic route in Pantoea sp. YR343. The Δ ipdC mutant was able to efficiently colonize poplar, suggesting that an active IPA pathway is not required for plant association.


Assuntos
Ácidos Indolacéticos/farmacologia , Pantoea/química , Reguladores de Crescimento de Plantas/farmacologia , Populus/química , Vias Biossintéticas , Reguladores de Crescimento de Plantas/biossíntese , Proteínas de Plantas/efeitos dos fármacos , Populus/microbiologia , Proteoma/efeitos dos fármacos
2.
Environ Microbiol ; 19(3): 1041-1053, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27871150

RESUMO

Many plant-associated fungi host endosymbiotic endobacteria with reduced genomes. While endobacteria play important roles in these tri-partite plant-fungal-endobacterial systems, the active physiology of fungal endobacteria has not been characterized extensively by systems biology approaches. Here, we use integrated proteomics and metabolomics to characterize the relationship between the endobacterium Mycoavidus sp. and the root-associated fungus Mortierella elongata. In nitrogen-poor media, M. elongata had decreased growth but hosted a large and growing endobacterial population. The active endobacterium likely extracted malate from the fungal host as the primary carbon substrate for energy production and biosynthesis of phospho-sugars, nucleobases, peptidoglycan and some amino acids. The endobacterium obtained nitrogen by importing a variety of nitrogen-containing compounds. Further, nitrogen limitation significantly perturbed the carbon and nitrogen flows in the fungal metabolic network. M. elongata regulated many pathways by concordant changes on enzyme abundances, post-translational modifications, reactant concentrations and allosteric effectors. Such multimodal regulations may be a general mechanism for metabolic modulation.


Assuntos
Burkholderiaceae/metabolismo , Mortierella/metabolismo , Simbiose , Carbono/metabolismo , Redes e Vias Metabólicas , Metabolômica , Nitrogênio/metabolismo , Raízes de Plantas/microbiologia , Processamento de Proteína Pós-Traducional , Proteômica
3.
Anal Chem ; 89(21): 11443-11451, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29039646

RESUMO

Cell-free protein synthesis (CFPS) has the potential to produce enzymes, therapeutic agents, and other proteins, while circumventing difficulties associated with in vivo heterologous expression. However, the contents of the cell-free extracts used to carry out synthesis are generally not characterized, which hampers progress toward enhancing yield or functional activity of the target protein. We explored the utility of mass spectrometry (MS)-based proteomics for characterizing the bacterial extracts used for transcribing and translating gene sequences into proteins as well as the products of CFPS reactions. Full proteome experiments identified over 1000 proteins per reaction. The complete set of proteins necessary for transcription and translation were found, demonstrating the ability to define potential metabolic capabilities of the extract. Further, MS-based techniques allowed characterization of the CFPS product and provided insight into the synthesis reaction and potential functional activity of the product. These capabilities were demonstrated using two different CFPS products, the commonly used standard green fluorescent protein (GFP, 27 kDa) and the polyketide synthase DEBS1 (394 kDa). For the large, multidomain DEBS1, substantial premature termination of protein translation was observed. Additionally, MS/MS analysis, as part of a conventional full proteomics workflow, identified post-translational modifications, including the chromophore in GFP, as well as the three phosphopantetheinylation sites in DEBS1. A hypothesis-driven approach focused on these three sites identified that all were correctly modified for DEBS1 expressed in vivo but with less complete coverage for protein expressed in CFPS reactions. These post-translational modifications are essential for functional activity, and the ability to identify them with mass spectrometry is valuable for judging the success of the CFPS reaction. Collectively, the use of MS-based proteomics will prove advantageous for advancing the application of CFPS and related techniques.


Assuntos
Proteínas de Escherichia coli/biossíntese , Proteômica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Espectrometria de Massas
4.
J Proteome Res ; 14(5): 2158-68, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25853567

RESUMO

Rhodopseudomonas palustris encodes 16 extracytoplasmic function (ECF) σ factors. To begin to investigate the regulatory network of one of these ECF σ factors, the whole proteome of R. palustris CGA010 was quantitatively analyzed by tandem mass spectrometry from cultures episomally expressing the ECF σ(RPA4225) (ecfT) versus a WT control. Among the proteins with the greatest increase in abundance were catalase KatE, trehalose synthase, a DPS-like protein, and several regulatory proteins. Alignment of the cognate promoter regions driving expression of several upregulated proteins suggested a conserved binding motif in the -35 and -10 regions with the consensus sequence GGAAC-18N-TT. Additionally, the putative anti-σ factor RPA4224, whose gene is contained in the same predicted operon as RPA4225, was identified as interacting directly with the predicted response regulator RPA4223 by mass spectrometry of affinity-isolated protein complexes. Furthermore, another gene (RPA4226) coding for a protein that contains a cytoplasmic histidine kinase domain is located immediately upstream of RPA4225. The genomic organization of orthologs for these four genes is conserved in several other strains of R. palustris as well as in closely related α-Proteobacteria. Taken together, these data suggest that ECF σ(RPA4225) and the three additional genes make up a sigma factor mimicry system in R. palustris.


Assuntos
Proteínas de Bactérias/isolamento & purificação , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Proteoma/isolamento & purificação , Fator sigma/isolamento & purificação , Estresse Fisiológico/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catalase/genética , Catalase/metabolismo , Cromatografia Líquida , Sequência Conservada , DNA Bacteriano/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Dados de Sequência Molecular , Motivos de Nucleotídeos , Óperon , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Rodopseudomonas/genética , Rodopseudomonas/metabolismo , Alinhamento de Sequência , Fator sigma/genética , Fator sigma/metabolismo , Espectrometria de Massas em Tandem , Transcrição Gênica
5.
Appl Environ Microbiol ; 81(24): 8346-57, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407887

RESUMO

The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists.


Assuntos
Adaptação Fisiológica/fisiologia , Azospirillum brasilense/metabolismo , Aderência Bacteriana/fisiologia , Oxigênio/metabolismo , Estresse Fisiológico/fisiologia , Azospirillum brasilense/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Cromatografia Líquida , Elementos de DNA Transponíveis/genética , Floculação , Reação em Cadeia da Polimerase , Espectrometria de Massas em Tandem
6.
J Proteome Res ; 13(3): 1359-72, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24559214

RESUMO

Strigolactones (SLs) are a new class of plant hormones. In addition to acting as a key inhibitor of shoot branching, SLs stimulate seed germination of root parasitic plants and promote hyphal branching and root colonization of symbiotic arbuscular mycorrhizal fungi. They also regulate many other aspects of plant growth and development. At the transcription level, SL-regulated genes have been reported. However, nothing is known about the proteome regulated by this new class of plant hormones. A quantitative proteomics approach using an isobaric chemical labeling reagent, iTRAQ, to identify the proteome regulated by SLs in Arabidopsis seedlings is presented. It was found that SLs regulate the expression of about three dozen proteins that have not been previously assigned to SL pathways. These findings provide a new tool to investigate the molecular mechanism of action of SLs.


Assuntos
Proteínas de Arabidopsis/análise , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Lactonas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Plântula/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fungos/efeitos dos fármacos , Fungos/fisiologia , Germinação/efeitos dos fármacos , Anotação de Sequência Molecular , Micorrizas/efeitos dos fármacos , Micorrizas/fisiologia , Proteômica/instrumentação , Proteômica/métodos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Coloração e Rotulagem
7.
Anal Chem ; 86(2): 1083-90, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24377265

RESUMO

This paper reports on the development of a hybrid atmospheric pressure atomic force microscopy/mass spectrometry imaging system utilizing nanothermal analysis probes for thermal desorption surface sampling with subsequent atmospheric pressure chemical ionization and mass analysis. The basic instrumental setup and the general operation of the system were discussed, and optimized performance metrics were presented. The ability to correlate topographic images of a surface with atomic force microscopy and a mass spectral chemical image of the same surface, utilizing the same probe without moving the sample from the system, was demonstrated. Co-registered mass spectral chemical images and atomic force microscopy topographical images were obtained from inked patterns on paper as well as from a living bacterial colony on an agar gel. Spatial resolution of the topography images based on pixel size (0.2 µm × 0.8 µm) was better than the resolution of the mass spectral images (2.5 µm × 2.0 µm), which were limited by current mass spectral data acquisition rate and system detection levels.


Assuntos
Microscopia de Força Atômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ágar , Pressão Atmosférica , Temperatura Alta , Processamento de Imagem Assistida por Computador , Tinta , Microscopia de Força Atômica/instrumentação , Fenazinas/análise , Raízes de Plantas/microbiologia , Populus/microbiologia , Impressão , Pseudomonas/química , Pseudomonas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Propriedades de Superfície
8.
Genome Res ; 21(4): 634-41, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21367939

RESUMO

Small proteins (10-200 amino acids [aa] in length) encoded by short open reading frames (sORF) play important regulatory roles in various biological processes, including tumor progression, stress response, flowering, and hormone signaling. However, ab initio discovery of small proteins has been relatively overlooked. Recent advances in deep transcriptome sequencing make it possible to efficiently identify sORFs at the genome level. In this study, we obtained ~2.6 million expressed sequence tag (EST) reads from Populus deltoides leaf transcriptome and reconstructed full-length transcripts from the EST sequences. We identified an initial set of 12,852 sORFs encoding proteins of 10-200 aa in length. Three computational approaches were then used to enrich for bona fide protein-coding sORFs from the initial sORF set: (1) coding-potential prediction, (2) evolutionary conservation between P. deltoides and other plant species, and (3) gene family clustering within P. deltoides. As a result, a high-confidence sORF candidate set containing 1469 genes was obtained. Analysis of the protein domains, non-protein-coding RNA motifs, sequence length distribution, and protein mass spectrometry data supported this high-confidence sORF set. In the high-confidence sORF candidate set, known protein domains were identified in 1282 genes (higher-confidence sORF candidate set), out of which 611 genes, designated as highest-confidence candidate sORF set, were supported by proteomics data. Of the 611 highest-confidence candidate sORF genes, 56 were new to the current Populus genome annotation. This study not only demonstrates that there are potential sORF candidates to be annotated in sequenced genomes, but also presents an efficient strategy for discovery of sORFs in species with no genome annotation yet available.


Assuntos
Biologia Computacional , Genômica , Anotação de Sequência Molecular/métodos , Proteômica , Etiquetas de Sequências Expressas , Dados de Sequência Molecular , Fases de Leitura Aberta , Folhas de Planta/genética , Proteínas de Plantas/genética , Populus/genética , RNA não Traduzido/genética , Projetos de Pesquisa
9.
PLoS Genet ; 7(12): e1002430, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22216014

RESUMO

Fossil records indicate that life appeared in marine environments ∼3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that "hydrobacteria" and "terrabacteria" might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land.


Assuntos
Organismos Aquáticos/genética , Azospirillum/genética , Evolução Biológica , Ecossistema , Transferência Genética Horizontal/genética , Genoma Bacteriano/genética , Rhodospirillaceae/genética , Sequência de Bases , Genes Essenciais/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética
10.
J Biol Chem ; 287(19): 15590-601, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22416131

RESUMO

N-lysine acetylation is a posttranslational modification that has been well studied in eukaryotes and is likely widespread in prokaryotes as well. The central metabolic enzyme acetyl-CoA synthetase is regulated in both bacteria and eukaryotes by acetylation of a conserved lysine residue in the active site. In the purple photosynthetic α-proteobacterium Rhodopseudomonas palustris, two protein acetyltransferases (RpPat and the newly identified RpKatA) and two deacetylases (RpLdaA and RpSrtN) regulate the activities of AMP-forming acyl-CoA synthetases. In this work, we used LC/MS/MS to identify other proteins regulated by the N-lysine acetylation/deacetylation system of this bacterium. Of the 24 putative acetylated proteins identified, 14 were identified more often in a strain lacking both deacetylases. Nine of these proteins were members of the AMP-forming acyl-CoA synthetase family. RpPat acetylated all nine of the acyl-CoA synthetases identified by this work, and RpLdaA deacetylated eight of them. In all cases, acetylation occurred at the conserved lysine residue in the active site, and acetylation decreased activity of the enzymes by >70%. Our results show that many different AMP-forming acyl-CoA synthetases are regulated by N-lysine acetylation. Five non-acyl-CoA synthetases were identified as possibly acetylated, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Rpa1177, a putative 4-oxalocrotonate tautomerase. Neither RpPat nor RpKatA acetylated either of these proteins in vitro. It has been reported that Salmonella enterica Pat (SePat) can acetylate a number of metabolic enzymes, including GAPDH, but we were unable to confirm this claim, suggesting that the substrate range of SePat is not as broad as suggested previously.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Lisina/metabolismo , Rodopseudomonas/enzimologia , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Acetilação , Acetiltransferases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Isomerases/genética , Isomerases/metabolismo , Lisina/genética , Espectrometria de Massas , Dados de Sequência Molecular , Rodopseudomonas/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
11.
Metabolites ; 13(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36837758

RESUMO

Pseudomonas fluorescens GM16 associates with Populus, a model plant in biofuel production. Populus releases abundant phenolic glycosides such as salicin, but P. fluorescens GM16 cannot utilize salicin, whereas Pseudomonas strains are known to utilize compounds similar to the aglycone moiety of salicin-salicyl alcohol. We propose that the association of Pseudomonas to Populus is mediated by another organism (such as Rahnella aquatilis OV744) that degrades the glucosyl group of salicin. In this study, we demonstrate that in the Rahnella-Pseudomonas salicin co-culture model, Rahnella grows by degrading salicin to glucose 6-phosphate and salicyl alcohol which is secreted out and is subsequently utilized by P. fluorescens GM16 for its growth. Using various quantitative approaches, we elucidate the individual pathways for salicin and salicyl alcohol metabolism present in Rahnella and Pseudomonas, respectively. Furthermore, we were able to establish that the salicyl alcohol cross-feeding interaction between the two strains on salicin medium is carried out through the combination of their respective individual pathways. The research presents one of the potential advantages of salicyl alcohol release by strains such as Rahnella, and how phenolic glycosides could be involved in attracting multiple types of bacteria into the Populus microbiome.

12.
J Proteome Res ; 11(3): 1582-90, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22188275

RESUMO

A variety of quantitative proteomics methods have been developed, including label-free, metabolic labeling, and isobaric chemical labeling using iTRAQ or TMT. Here, these methods were compared in terms of the depth of proteome coverage, quantification accuracy, precision, and reproducibility using a high-performance hybrid mass spectrometer, LTQ Orbitrap Velos. Our results show that (1) the spectral counting method provides the deepest proteome coverage for identification, but its quantification performance is worse than labeling-based approaches, especially the quantification reproducibility; (2) metabolic labeling and isobaric chemical labeling are capable of accurate, precise, and reproducible quantification and provide deep proteome coverage for quantification; isobaric chemical labeling surpasses metabolic labeling in terms of quantification precision and reproducibility; and (3) iTRAQ and TMT perform similarly in all aspects compared in the current study using a CID-HCD dual scan configuration. On the basis of the unique advantages of each method, we provide guidance for selection of the appropriate method for a quantitative proteomics study.


Assuntos
Proteínas de Bactérias/metabolismo , Proteoma/metabolismo , Coloração e Rotulagem/métodos , Espectrometria de Massas em Tandem/métodos , Algoritmos , Proteínas de Bactérias/química , Marcação por Isótopo , Fragmentos de Peptídeos/química , Mapeamento de Peptídeos/métodos , Proteoma/química , Proteômica , Pseudomonas putida/metabolismo , Reprodutibilidade dos Testes
13.
Sci Rep ; 10(1): 14985, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917935

RESUMO

Membrane organization plays an important role in signaling, transport, and defense. In eukaryotes, the stability, organization, and function of membrane proteins are influenced by certain lipids and sterols, such as cholesterol. Bacteria lack cholesterol, but carotenoids and hopanoids are predicted to play a similar role in modulating membrane properties. We have previously shown that the loss of carotenoids in the plant-associated bacteria Pantoea sp. YR343 results in changes to membrane biophysical properties and leads to physiological changes, including increased sensitivity to reactive oxygen species, reduced indole-3-acetic acid secretion, reduced biofilm and pellicle formation, and reduced plant colonization. Here, using whole cell and membrane proteomics, we show that the deletion of carotenoid production in Pantoea sp. YR343 results in altered membrane protein distribution and abundance. Moreover, we observe significant differences in the protein composition of detergent-resistant membrane fractions from wildtype and mutant cells, consistent with the prediction that carotenoids play a role in organizing membrane microdomains. These data provide new insights into the function of carotenoids in bacterial membrane organization and identify cellular functions that are affected by the loss of carotenoids.


Assuntos
Proteínas de Bactérias , Carotenoides , Membrana Celular , Proteínas de Membrana , Mutação , Pantoea , Proteoma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pantoea/genética , Pantoea/metabolismo , Proteoma/genética , Proteoma/metabolismo
14.
Proteomics ; 9(21): 4871-80, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19743414

RESUMO

Understanding the molecular pathways of plant cell wall biosynthesis and remodeling is central to interpreting biological mechanisms underlying plant growth and adaptation as well as leveraging that knowledge towards development of improved bioenergy feedstocks. Here, we report the application of shotgun MS/MS profiling to the proteome of Populus developing xylem. Nearly 6000 different proteins were identified from the xylem proteome. To identify low-abundance DNA-regulatory proteins from the developing xylem, a selective nuclear proteome profiling method was developed. Several putative transcription factors and chromatin remodeling proteins were identified using this method, such as NAC domain, CtCP-like and CHB3-SWI/SNF-related proteins. Public databases were mined to obtain information in support of subcellular localization, transcript-level expression and functional categorization of identified proteins. In addition to finding protein-level evidence of candidate cell wall biosynthesis genes from xylem (wood) tissue such as cellulose synthase, sucrose synthase and polygalacturonase, several other potentially new candidate genes in the cell wall biosynthesis pathway were discovered. Further application of such proteomics methods will aid in plant systems biology modeling efforts by enhancing the understanding not only of cell wall biosynthesis but also of other plant developmental and physiological pathways.


Assuntos
Proteínas de Plantas/análise , Populus/química , Proteoma/análise , Proteômica/métodos , Xilema/química , Parede Celular/química , Proteínas Nucleares/análise , Proteínas de Plantas/genética , Populus/genética , Populus/crescimento & desenvolvimento , Proteoma/genética , Espectrometria de Massas em Tandem , Transcrição Gênica , Xilema/genética , Xilema/crescimento & desenvolvimento
15.
Anal Biochem ; 395(2): 166-77, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19698693

RESUMO

Identifying and characterizing protein interactions are fundamental steps toward understanding and modeling biological networks. Methods that detect protein interactions in intact cells rather than buffered solutions are likely more relevant to natural systems since molecular crowding events in the cytosol can influence the diffusion and reactivity of individual proteins. One in vivo, imaging-based method relies on the colocalization of two proteins of interest fused to DivIVA, a cell division protein from Bacillus subtilis, and green fluorescent protein (GFP). We have modified this imaging-based assay to facilitate rapid cloning by constructing new vectors encoding N- and C-terminal DivIVA or GFP molecular tag fusions based on site-specific recombination technology. The sensitivity of the assay was defined using a well-characterized protein interaction system involving the eukaryotic nuclear import receptor subunit, Importin alpha (Imp alpha), and variant nuclear localization signals (NLS) representing a range of binding affinities. These data demonstrate that the modified colocalization assay is sensitive enough to detect protein interactions with K(d) values that span over four orders of magnitude (1 nM to 15 microM). Lastly, this assay was used to confirm numerous protein interactions identified from mass spectrometry-based analyses of affinity isolates as part of an interactome mapping project in Rhodopseudomonas palustris.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteínas Recombinantes de Fusão/análise , Técnicas do Sistema de Duplo-Híbrido , Sequência de Aminoácidos , Proteínas de Bactérias/análise , Proteínas de Ciclo Celular/análise , Proteínas de Fluorescência Verde/análise , Dados de Sequência Molecular , Sinais de Localização Nuclear/análise , Plasmídeos/genética , Rodopseudomonas/metabolismo , alfa Carioferinas/análise
16.
Front Microbiol ; 10: 2706, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866955

RESUMO

Stable isotope probing (SIP) enables tracking the nutrient flows from isotopically labeled substrates to specific microorganisms in microbial communities. In proteomic SIP, labeled proteins synthesized by the microbial consumers of labeled substrates are identified with a shotgun proteomics approach. Here, proteomic SIP was combined with targeted metagenomic binning to reconstruct metagenome-assembled genomes (MAGs) of the microorganisms producing labeled proteins. This approach was used to track carbon flows from 13CO2 to the rhizosphere communities of Zea mays, Triticum aestivum, and Arabidopsis thaliana. Rhizosphere microorganisms that assimilated plant-derived 13C were capable of metabolic and signaling interactions with their plant hosts, as shown by their MAGs containing genes for phytohormone modulation, quorum sensing, and transport and metabolism of nutrients typical of those found in root exudates. XoxF-type methanol dehydrogenases were among the most abundant proteins identified in the rhizosphere metaproteomes. 13C-methanol proteomic SIP was used to test the hypothesis that XoxF was used to metabolize and assimilate methanol in the rhizosphere. We detected 7 13C-labeled XoxF proteins and identified methylotrophic pathways in the MAGs of 8 13C-labeled microorganisms, which supported the hypothesis. These two studies demonstrated the capability of proteomic SIP for functional characterization of active microorganisms in complex microbial communities.

17.
Synth Biol (Oxf) ; 3(1): ysy006, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32995514

RESUMO

Living systems possess a rich biochemistry that can be harnessed through metabolic engineering to produce valuable therapeutics, fuels and fine chemicals. In spite of the tools created for this purpose, many organisms tend to be recalcitrant to modification or difficult to optimize. Crude cellular extracts, made by lysis of cells, possess much of the same biochemical capability, but in an easier to manipulate context. Metabolic engineering in crude extracts, or cell-free metabolic engineering, can harness these capabilities to feed heterologous pathways for metabolite production and serve as a platform for pathway optimization. However, the inherent biochemical potential of a crude extract remains ill-defined, and consequently, the use of such extracts can result in inefficient processes and unintended side products. Herein, we show that changes in cell growth conditions lead to changes in the enzymatic activity of crude cell extracts and result in different abilities to produce the central biochemical precursor pyruvate when fed glucose. Proteomic analyses coupled with metabolite measurements uncover the diverse biochemical capabilities of these different crude extract preparations and provide a framework for how analytical measurements can be used to inform and improve crude extract performance. Such informed developments can allow enrichment of crude extracts with pathways that promote or deplete particular metabolic processes and aid in the metabolic engineering of defined products.

18.
Biotechniques ; 43(3): 296, 298, 300 passim, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17907572

RESUMO

Although affinity purification coupled with mass spectrometry (MS) provides a powerful tool to study protein-protein interactions, this strategy has encountered numerous difficulties when adapted to mammalian cells. Here we describe a Gateway-compatible dual-tag affinity purification system that integrates regulatable expression, tetracysteine motifs, and various combinations ofaffinity tags to facilitate the cloning, detection, and purification of bait proteins and their interacting partners. Utilizing the human telomere binding protein TRF2 as a benchmark, we demonstrate bait protein recoveries upwards of approximately 16% from as little as 1-7 x 10(7) cells and successfully identify known TRF2 interacting proteins, suggesting that our dual-tag affinity purification approach is a capable new tool for expanding the capacity to explore mammalian proteomic networks.


Assuntos
Perfilação da Expressão Gênica/métodos , Marcação por Isótopo/métodos , Rim/metabolismo , Espectrometria de Massas/métodos , Mapeamento de Interação de Proteínas/métodos , Proteoma/química , Proteoma/metabolismo , Linhagem Celular , Humanos
19.
J Phys Chem Lett ; 8(8): 1899-1904, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28388043

RESUMO

Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.3) × 10-12 m2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Internal protein dynamics showed a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to the literature suggests that the effective diffusivity of proteins depends on the length and time scale being probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale, suggesting that intracellular diffusion of biomolecules is nonuniform over the cellular volume. The approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using "in-cell neutron scattering" to study the dynamics of complex biomolecular systems.

20.
J Am Soc Mass Spectrom ; 17(7): 903-915, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16713712

RESUMO

We report an automated method for determining charge states from high-resolution mass spectra. Fourier transforms of isotope packets from high-resolution mass spectra are compared to Fourier transforms of modeled isotopic peak packets for a range of charge states. The charge state for the experimental ion packet is determined by the model isotope packet that yields the best match in the comparison of the Fourier transforms. This strategy is demonstrated for determining peptide ion charge states from "zoom scan" data from a linear quadrupole ion trap mass spectrometer, enabling the subsequent automated identification of singly- through quadruply-charged peptide ions, while reducing the numbers of conflicting identifications from ambiguous charge state assignments. We also apply this technique to determine the charges of intact protein ions from LC-FTICR data, demonstrating that it is more sensitive under these experimental conditions than two existing algorithms. The strategy outlined in this paper should be generally applicable to mass spectra obtained from any instrument capable of isotopic resolution.


Assuntos
Algoritmos , Cromatografia Líquida de Alta Pressão/métodos , Modelos Químicos , Peptídeos/química , Proteínas/química , Processamento de Sinais Assistido por Computador , Espectrometria de Massas por Ionização por Electrospray/métodos , Simulação por Computador , Análise de Fourier , Íons , Marcação por Isótopo/métodos , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa