Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 155(4): 2817-2835, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682912

RESUMO

Accurate modelling and prediction of sediment transport in aquatic environments is essential for sustainable coastal and riverine management. Current capabilities rely on physical process-based numerical models and fine-scale sediment flux measurements. High-resolution hydroacoustic instrumentation has emerged as a promising tool for such measurements. However, challenges arise due to the inherent complexity of ultrasound scattering processes. This study introduces a numerical modelling using a point-particle approach to simulate the echoes backscattered by such instrumentation in sediment-laden flow conditions. The model considers geometric, statistical, particle cloud, and flow-induced effects on sediment velocity, concentration, and flux estimates using an acoustic concentration and velocity profiler as a reference. The model performance is assessed here under unidirectional constant flow conditions in terms of velocity, concentration, and time-resolved sediment flux estimates for a large range of the particles' advection speed and sampled volume sizes. Application to the estimation of the measurement accuracy of sediment flux in these flows is also considered, with a final error on the flux seen to be partially controlled by the residence time of particles within the sampled volumes. The proposed model provides insights into scattering processes and offers a tool for investigating robust sediment flux estimation techniques in various flow conditions.

2.
J Acoust Soc Am ; 130(3): 1188-200, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21895061

RESUMO

Although sound has been applied to the study of sediment transport processes for a number of years, it is acknowledged that there are still problems in using the backscattered signal to measure suspended sediment parameters. In particular, when the attenuation due to the suspension becomes significant, the uncertainty associated with the variability in the scattering characteristics of the sediments in suspension can lead to inversion errors which accumulate as the sound propagates through the suspension. To study this attenuation propagation problem, numerical simulations and laboratory experiments have been used to assess the impact unpredictability in the scattering properties of the suspension has on the acoustically derived suspended sediments parameters. The results clearly show the commonly applied iterative implicit inversion can lead to calculated sediment parameters, which become increasingly erroneous with range, as the sound propagates through the suspension. To address this problem an alternative approach to the iterative implicit formulation is investigated using a recently described dual frequency inversion. This approach is not subject to the accumulation of errors and has an explicit solution. Here the dual frequency inversion is assessed and calculated suspended sediment parameters are compared with those obtained from the iterative implicit inversion.


Assuntos
Acústica , Sedimentos Geológicos , Modelos Teóricos , Som , Água , Acústica/instrumentação , Simulação por Computador , Movimento (Física) , Análise Numérica Assistida por Computador , Oceanos e Mares , Tamanho da Partícula , Espalhamento de Radiação , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Fatores de Tempo , Transdutores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa