Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 32(6): 1849-1874, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38584391

RESUMO

The clinical potential of current FDA-approved chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy is encumbered by its autologous nature, which presents notable challenges related to manufacturing complexities, heightened costs, and limitations in patient selection. Therefore, there is a growing demand for off-the-shelf universal cell therapies. In this study, we have generated universal CAR-engineered NKT (UCAR-NKT) cells by integrating iNKT TCR engineering and HLA gene editing on hematopoietic stem cells (HSCs), along with an ex vivo, feeder-free HSC differentiation culture. The UCAR-NKT cells are produced with high yield, purity, and robustness, and they display a stable HLA-ablated phenotype that enables resistance to host cell-mediated allorejection. These UCAR-NKT cells exhibit potent antitumor efficacy to blood cancers and solid tumors, both in vitro and in vivo, employing a multifaceted array of tumor-targeting mechanisms. These cells are further capable of altering the tumor microenvironment by selectively depleting immunosuppressive tumor-associated macrophages and myeloid-derived suppressor cells. In addition, UCAR-NKT cells demonstrate a favorable safety profile with low risks of graft-versus-host disease and cytokine release syndrome. Collectively, these preclinical studies underscore the feasibility and significant therapeutic potential of UCAR-NKT cell products and lay a foundation for their translational and clinical development.


Assuntos
Células-Tronco Hematopoéticas , Imunoterapia Adotiva , Células T Matadoras Naturais , Receptores de Antígenos Quiméricos , Humanos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Animais , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Camundongos , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Edição de Genes , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/terapia , Neoplasias/imunologia , Linhagem Celular Tumoral , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
2.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806311

RESUMO

Cell-based cancer immunotherapy, such as chimeric antigen receptor (CAR) engineered T and natural killer (NK) cell therapies, has become a revolutionary new pillar in cancer treatment. Interleukin 15 (IL-15), a potent immunostimulatory cytokine that potentiates T and NK cell immune responses, has demonstrated the reliability and potency to potentially improve the therapeutic efficacy of current cell therapy. Structurally similar to interleukin 2 (IL-2), IL-15 supports the persistence of CD8+ memory T cells while inhibiting IL-2-induced T cell death that better maintains long-term anti-tumor immunity. In this review, we describe the biology of IL-15, studies on administrating IL-15 and/or its derivatives as immunotherapeutic agents, and IL-15-armored immune cells in adoptive cell therapy. We also discuss the advantages and challenges of incorporating IL-15 in cell-based immunotherapy and provide directions for future investigation.


Assuntos
Interleucina-15 , Neoplasias , Humanos , Imunoterapia , Imunoterapia Adotiva , Interleucina-2 , Neoplasias/metabolismo , Reprodutibilidade dos Testes
3.
Nat Biotechnol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744947

RESUMO

Cancer immunotherapy with autologous chimeric antigen receptor (CAR) T cells faces challenges in manufacturing and patient selection that could be avoided by using 'off-the-shelf' products, such as allogeneic CAR natural killer T (AlloCAR-NKT) cells. Previously, we reported a system for differentiating human hematopoietic stem and progenitor cells into AlloCAR-NKT cells, but the use of three-dimensional culture and xenogeneic feeders precluded its clinical application. Here we describe a clinically guided method to differentiate and expand IL-15-enhanced AlloCAR-NKT cells with high yield and purity. We generated AlloCAR-NKT cells targeting seven cancers and, in a multiple myeloma model, demonstrated their antitumor efficacy, expansion and persistence. The cells also selectively depleted immunosuppressive cells in the tumor microenviroment and antagonized tumor immune evasion via triple targeting of CAR, TCR and NK receptors. They exhibited a stable hypoimmunogenic phenotype associated with epigenetic and signaling regulation and did not induce detectable graft versus host disease or cytokine release syndrome. These properties of AlloCAR-NKT cells support their potential for clinical translation.

4.
Cancers (Basel) ; 14(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35565395

RESUMO

Cell-based immunotherapy, such as chimeric antigen receptor (CAR) T cell therapy, has revolutionized the treatment of hematological malignancies, especially in patients who are refractory to other therapies. However, there are critical obstacles that hinder the widespread clinical applications of current autologous therapies, such as high cost, challenging large-scale manufacturing, and inaccessibility to the therapy for lymphopenia patients. Therefore, it is in great demand to generate the universal off-the-shelf cell products with significant scalability. Human induced pluripotent stem cells (iPSCs) provide an "unlimited supply" for cell therapy because of their unique self-renewal properties and the capacity to be genetically engineered. iPSCs can be differentiated into different immune cells, such as T cells, natural killer (NK) cells, invariant natural killer T (iNKT) cells, gamma delta T (γδ T), mucosal-associated invariant T (MAIT) cells, and macrophages (Mφs). In this review, we describe iPSC-based allogeneic cell therapy, the different culture methods of generating iPSC-derived immune cells (e.g., iPSC-T, iPSC-NK, iPSC-iNKT, iPSC-γδT, iPSC-MAIT and iPSC-Mφ), as well as the recent advances in iPSC-T and iPSC-NK cell therapies, particularly in combinations with CAR-engineering. We also discuss the current challenges and the future perspectives in this field towards the foreseeable applications of iPSC-based immune therapy.

5.
Melanoma Res ; 31(6): 526-532, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494605

RESUMO

Advancements in dermoscopy techniques have elucidated identifiable characteristics of melanoma which revolve around the asymmetrical constitution of melanocytic lesions consequent of unfettered proliferative growth as a malignant lesion. This study explores the applications of hierarchical density-based spatial clustering of applications with noise (HDBSCAN) in terms of the direct diagnostic implications of applying agglomerative clustering in the spectroscopic analysis of malignant melanocytic lesions and benign dermatologic spots. 100 images of benign (n = 50) and malignant moles (n = 50) were sampled from the International Skin Imaging Collaboration Archive and processed through two separate Python algorithms. The first of which deconvolutes the three-digit tupled integer identifiers of pixel color in image composition into three separate matrices corresponding to the red, green and blue color channel. Statistical characterization of integer variance was utilized to determine the optimal channel for comparative analysis between malignant and benign image groups. The second applies HDBSCAN to the matrices, identifying agglomerative clustering in the dataset. The results indicate the potential diagnostic applications of HDBSCAN analysis in fast-processing dermoscopy, as optimization of clustering parameters according to a binary search strategy produced an accuracy of 85% in the classification of malignant and benign melanocytic lesions.


Assuntos
Aprendizado de Máquina/normas , Espectroscopia de Ressonância Magnética/métodos , Melanócitos/ultraestrutura , Melanoma/diagnóstico por imagem , Neoplasias Cutâneas/diagnóstico por imagem , Análise por Conglomerados , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa