Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7214, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532007

RESUMO

This research commences a unit statistical model named power new power function distribution, exhibiting a thorough analysis of its complementary properties. We investigate the advantages of the new model, and some fundamental distributional properties are derived. The study aims to improve insight and application by presenting quantitative and qualitative perceptions. To estimate the three unknown parameters of the model, we carefully examine various methods: the maximum likelihood, least squares, weighted least squares, Anderson-Darling, and Cramér-von Mises. Through a Monte Carlo simulation experiment, we quantitatively evaluate the effectiveness of these estimation methods, extending a robust evaluation framework. A unique part of this research lies in developing a novel regressive analysis based on the proposed distribution. The application of this analysis reveals new viewpoints and improves the benefit of the model in practical situations. As the emphasis of the study is primarily on practical applications, the viability of the proposed model is assessed through the analysis of real datasets sourced from diverse fields.

2.
Heliyon ; 10(2): e24001, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298704

RESUMO

We aim in this paper to propose a novel class of distributions that was created by merging the Topp-Leone distribution and the Generated families of Kumaraswamy and Marshall-Olkin. Its cumulative distribution function characterizes it and includes rational and polynomial functions. In particular, the following desirable properties of the new family are presented: Shannon entropy, order statistics, the quantile power series, and several associated measures and functions. Then, using a specific family member identified before, we create a parametric statistical model with the basic distribution being the inverse exponential distribution. Finally, a thorough investigation has been made to implement this new distribution with three data sets: the glass fibers data set, the glass Alumina data set and the hailing times data set. In comparison to six prominent competitors, the new model performs favorably on all statistical tests and criteria that were examined.

3.
PLoS One ; 18(4): e0283618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37036849

RESUMO

This paper provides a novel model that is more relevant than the well-known conventional distributions, which stand for the two-parameter distribution of the lifetime modified Kies Topp-Leone (MKTL) model. Compared to the current distributions, the most recent one gives an unusually varied collection of probability functions. The density and hazard rate functions exhibit features, demonstrating that the model is flexible to several kinds of data. Multiple statistical characteristics have been obtained. To estimate the parameters of the MKTL model, we employed various estimation techniques, including maximum likelihood estimators (MLEs) and the Bayesian estimation approach. We compared the traditional reliability function model to the fuzzy reliability function model within the reliability analysis framework. A complete Monte Carlo simulation analysis is conducted to determine the precision of these estimators. The suggested model outperforms competing models in real-world applications and may be chosen as an enhanced model for building a statistical model for the COVID-19 data and other data sets with similar features.


Assuntos
COVID-19 , Humanos , Teorema de Bayes , Reprodutibilidade dos Testes , Simulação por Computador , Modelos Estatísticos , Funções Verossimilhança , Análise de Dados
4.
PLoS One ; 18(2): e0281474, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36753497

RESUMO

In this paper, we introduced a novel general two-parameter statistical distribution which can be presented as a mix of both exponential and gamma distributions. Some statistical properties of the general model were derived mathematically. Many estimation methods studied the estimation of the proposed model parameters. A new statistical model was presented as a particular case of the general two-parameter model, which is used to study the performance of the different estimation methods with the randomly generated data sets. Finally, the COVID-19 data set was used to show the superiority of the particular case for fitting real-world data sets over other compared well-known models.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Modelos Estatísticos , Distribuições Estatísticas
5.
Sci Rep ; 13(1): 12452, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528103

RESUMO

Evaluating the lifespan distribution of highly reliable commodities under regular use is exceedingly difficult, time consuming, and extremely expensive. As a result of its ability to provide more failure data faster and at a lower experimental cost, accelerated life testing has become increasingly important in life testing studies. In this article, we concentrate on parametric inference for step stress partially life testing utilizing multiple censored data based on the Tampered Random Variable model. Under normal stress circumstances, the lifespan of the experimental units is assumed to follow the Nadarajah-Haghighi distribution, with and being the shape and scale parameters, respectively. Maximum likelihood estimates for model parameters and acceleration factor are developed using multiple censored data. We build asymptotic confidence intervals for the unknown parameters using the observed Fisher information matrix. To demonstrate the applicability of the different methodologies, an actual data set based on the timings of subsequent failures of consecutive air conditioning system failures for each member of a Boeing 720 jet aircraft fleet is investigated. Finally, thorough simulation studies utilizing various censoring strategies are performed to evaluate the estimate procedure performance. Several sample sizes were studied in order to investigate the finite sample features of the considered estimators. According to our numerical findings, the values of mean squared errors and average asymptotic confidence intervals lengths drop as sample size increases. Furthermore, when the censoring level is reduced, the considered estimates of the parameters approach their genuine values.

6.
Sci Rep ; 13(1): 12828, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550320

RESUMO

This article presents and investigates a modified version of the Weibull distribution that incorporates four parameters and can effectively represent a hazard rate function with a shape resembling a bathtub. Its significance in the fields of lifetime and reliability stems from its ability to model both increasing and decreasing failure rates. The proposed distribution encompasses several well-known models such as the Weibull, extreme value, exponentiated Weibull, generalized Rayleigh, and modified Weibull distributions. The paper derives key mathematical statistics of the proposed distribution, including the quantile function, moments, moment-generating function, and order statistics density. Various mathematical properties of the proposed model are established, and the unknown parameters of the distribution are estimated using different estimation techniques. Furthermore, the effectiveness of these estimators is assessed through numerical simulation studies. Finally, the paper applies the new model and compares it with various existing distributions by analyzing two real-life time data sets.

7.
PLoS One ; 18(1): e0278659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36595502

RESUMO

During the course of this research, we came up with a brand new distribution that is superior; we then presented and analysed the mathematical properties of this distribution; finally, we assessed its fuzzy reliability function. Because the novel distribution provides a number of advantages, like the reality that its cumulative distribution function and probability density function both have a closed form, it is very useful in a wide range of disciplines that are related to data science. One of these fields is machine learning, which is a sub field of data science. We used both traditional methods and Bayesian methodologies in order to generate a large number of different estimates. A test setup might have been carried out to assess the effectiveness of both the classical and the Bayesian estimators. At last, three different sets of Covid-19 death analysis were done so that the effectiveness of the new model could be demonstrated.


Assuntos
COVID-19 , Humanos , Teorema de Bayes , Reprodutibilidade dos Testes , COVID-19/epidemiologia , Funções Verossimilhança
8.
Sci Rep ; 13(1): 12243, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507438

RESUMO

The paper presents a novel statistical approach for analyzing the daily coronavirus case and fatality statistics. The survival discretization method was used to generate a two-parameter discrete distribution. The resulting distribution is referred to as the "Discrete Marshall-Olkin Length Biased Exponential (DMOLBE) distribution". Because of the varied forms of its probability mass and failure rate functions, the DMOLBE distribution is adaptable. We calculated the mean and variance, skewness, kurtosis, dispersion index, hazard and survival functions, and second failure rate function for the suggested distribution. The DI index demonstrates that the proposed model can represent both over-dispersed and under-dispersed data sets. We estimated the parameters of the DMOLBE distribution. The behavior of ML estimates is checked via a comprehensive simulation study. The behavior of Bayesian estimates is checked by generating 10,000 iterations of Markov chain Monte Carlo techniques, plotting the trace, and checking the proposed distribution. From simulation studies, it was observed that the bias and mean square error decreased with an increase in sample size. To show the importance and flexibility of DMOLBE distribution using two data sets about deaths due to coronavirus in China and Pakistan are analyzed. The DMOLBE distribution provides a better fit than some important discrete models namely the discrete Burr-XII, discrete Bilal, discrete Burr-Hatke, discrete Rayleigh distribution, and Poisson distributions. We conclude that the new proposed distribution works well in analyzing these data sets. The data sets used in the paper was collected from 2020 year.


Assuntos
COVID-19 , Humanos , Teorema de Bayes , COVID-19/epidemiologia , Simulação por Computador , Probabilidade , Cadeias de Markov , Método de Monte Carlo
9.
PLoS One ; 18(1): e0278225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36649270

RESUMO

We introduced a brand-new member of the family that is going to be referred to as the New Power Topp-Leone Generated (NPTL-G). This new member is one of a kind. Given the major functions that created this new member, important mathematical aspects are discussed in as much detail as possible. We derived some functions for the new one, included the Rényi entropy, the qf, series development, and moment weighted probabilities. Moreover, to estimate the values of the parameters of our model that were not known, we employed the maximum likelihood technique. In addition, two actual datasets from the real world were investigated in order to bring attention to the possible applications of this novel distribution. This new model performs better than three key rivals based on the measurements that were collected.


Assuntos
Probabilidade , Entropia
10.
Math Biosci Eng ; 20(2): 3324-3341, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36899583

RESUMO

The initial COVID-19 vaccinations were created and distributed to the general population in 2020 thanks to emergency authorization and conditional approval. Consequently, numerous countries followed the process that is currently a global campaign. Taking into account the fact that people are being vaccinated, there are concerns about the effectiveness of that medical solution. Actually, this study is the first one focusing on how the number of vaccinated people might influence the spread of the pandemic in the world. From the Global Change Data Lab "Our World in Data", we were able to get data sets about the number of new cases and vaccinated people. This study is a longitudinal one from 14/12/2020 to 21/03/2021. In addition, we computed Generalized log-Linear Model on count time series (Negative Binomial distribution due to over dispersion in data) and implemented validation tests to confirm the robustness of our results. The findings revealed that when the number of vaccinated people increases by one new vaccination on a given day, the number of new cases decreases significantly two days after by one. The influence is not notable on the same day of vaccination. Authorities should increase the vaccination campaign to control well the pandemic. That solution has effectively started to reduce the spread of COVID-19 in the world.


Assuntos
COVID-19 , Humanos , Vacinas contra COVID-19 , Programas de Imunização , Modelos Lineares , Vacinação
11.
PLoS One ; 17(10): e0276688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36306316

RESUMO

The objective of this study is to construct a new distribution known as the weighted Burr-Hatke distribution (WBHD). The PDF and CDF of the WBHD are derived in a closed form. Moments, incomplete moments, and the quantile function of the proposed distribution are derived mathematically. Eleven estimate techniques for estimating the distribution parameters are discussed, and numerical simulations are utilised to evaluate the various approaches using partial and overall rankings. According to the findings of this study, it is recommended that the maximum product of spacing (MPSE) estimator of the WBHD is the best estimator according to overall rank table. The actuarial measurements were derived to the suggested distribution. By contrasting the WBHD with other competitive distributions using two different actual data sets collected from the COVID-19 mortality rates, we show the importance and flexibility of the WBHD.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Arábia Saudita/epidemiologia , Modelos Estatísticos
12.
Math Biosci Eng ; 19(7): 6551-6581, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35730272

RESUMO

This paper addresses asymmetric flexible two-parameter exponential model called the weighted exponential (WDEx) distribution. Some of its basic mathematical features are evaluated. Its hazard rate accommodates upside-down bathtub, decreasing, decreasing-constant, increasing, and increasing-constant shapes. Five actuarial indicators are studied. We utilize nine classical and Bayesian approaches of estimation for estimating the WDEx parameters. We provide a detailed simulation study to explore and assess the asymptotic behaviors of these estimators. Two approximation methods called the Markov chain Mont Carlo and Tierney and Kadane are applied to obtain the Bayesian estimates. The efficiency and applicability of the WDEx distribution are explored by modeling a lifetime data set from insurance field, showing that the WDEx distribution provides a superior fit over its competing exponential models such as the beta-exponential, Harris extend-exponential, Marshall-Olkin exponential, Marshall-Olkin alpha-power exponential, gamma Weibull, and exponentiated-Weibull distributions.


Assuntos
Seguro , Modelos Estatísticos , Teorema de Bayes , Simulação por Computador
13.
Comput Math Methods Med ; 2022: 1444859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035288

RESUMO

In this work, we presented the type I half logistic Burr-Weibull distribution, which is a unique continuous distribution. It offers several superior benefits in fitting various sorts of data. Estimates of the model parameters based on classical and nonclassical approaches are offered. Also, the Bayesian estimates of the model parameters were examined. The Bayesian estimate method employs the Monte Carlo Markov chain approach for the posterior function since the posterior function came from an uncertain distribution. The use of Monte Carlo simulation is to assess the parameters. We established the superiority of the proposed distribution by utilising real COVID-19 data from varied countries such as Saudi Arabia and Italy to highlight the relevance and flexibility of the provided technique. We proved our superiority using both real data.


Assuntos
COVID-19 , Teorema de Bayes , Humanos , Cadeias de Markov , Método de Monte Carlo , Distribuições Estatísticas
14.
Math Biosci Eng ; 19(9): 8705-8740, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35942732

RESUMO

The modern trend in distribution theory is to propose hybrid generators and generalized families using existing algebraic generators along with some trigonometric functions to offer unique, more flexible, more efficient, and highly productive G-distributions to deal with new data sets emerging in different fields of applied research. This article aims to originate an odd sine generator of distributions and construct a new G-family called "The Odd Lomax Trigonometric Generalized Family of Distributions". The new densities, useful functions, and significant characteristics are thoroughly determined. Several specific models are also presented, along with graphical analysis and detailed description. A new distribution, "The Lomax cosecant Weibull" (LocscW), is studied in detail. The versatility, robustness, and competency of the LocscW model are confirmed by applications on hydrological and survival data sets. The skewness and kurtosis present in this model are explained using modern graphical methods, while the estimation and statistical inference are explored using many estimation approaches.


Assuntos
Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa