Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
J Biomed Sci ; 31(1): 7, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221607

RESUMO

Three-dimensional (3D) cell cultures have emerged as valuable tools in cancer research, offering significant advantages over traditional two-dimensional (2D) cell culture systems. In 3D cell cultures, cancer cells are grown in an environment that more closely mimics the 3D architecture and complexity of in vivo tumors. This approach has revolutionized cancer research by providing a more accurate representation of the tumor microenvironment (TME) and enabling the study of tumor behavior and response to therapies in a more physiologically relevant context. One of the key benefits of 3D cell culture in cancer research is the ability to recapitulate the complex interactions between cancer cells and their surrounding stroma. Tumors consist not only of cancer cells but also various other cell types, including stromal cells, immune cells, and blood vessels. These models bridge traditional 2D cell cultures and animal models, offering a cost-effective, scalable, and ethical alternative for preclinical research. As the field advances, 3D cell cultures are poised to play a pivotal role in understanding cancer biology and accelerating the development of effective anticancer therapies. This review article highlights the key advantages of 3D cell cultures, progress in the most common scaffold-based culturing techniques, pertinent literature on their applications in cancer research, and the ongoing challenges.


Assuntos
Neoplasias , Alicerces Teciduais , Animais , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células em Três Dimensões , Microambiente Tumoral
2.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892199

RESUMO

In exploring the challenges of bone repair and regeneration, this review evaluates the potential of bone tissue engineering (BTE) as a viable alternative to traditional methods, such as autografts and allografts. Key developments in biomaterials and scaffold fabrication techniques, such as additive manufacturing and cell and bioactive molecule-laden scaffolds, are discussed, along with the integration of bio-responsive scaffolds, which can respond to physical and chemical stimuli. These advancements collectively aim to mimic the natural microenvironment of bone, thereby enhancing osteogenesis and facilitating the formation of new tissue. Through a comprehensive combination of in vitro and in vivo studies, we scrutinize the biocompatibility, osteoinductivity, and osteoconductivity of these engineered scaffolds, as well as their interactions with critical cellular players in bone healing processes. Findings from scaffold fabrication techniques and bio-responsive scaffolds indicate that incorporating nanostructured materials and bioactive compounds is particularly effective in promoting the recruitment and differentiation of osteoprogenitor cells. The therapeutic potential of these advanced biomaterials in clinical settings is widely recognized and the paper advocates continued research into multi-responsive scaffold systems.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Osso e Ossos , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Humanos , Animais , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Materiais Biocompatíveis/química , Osteogênese , Diferenciação Celular
3.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686065

RESUMO

Glioblastoma (GBM) is a highly aggressive brain tumor, and its treatment is further complicated by the high selectivity of the blood-brain barrier (BBB). The scientific community is urgently seeking innovative and effective therapeutic solutions. Liposomes are a promising new tool that has shown potential in addressing the limitations of chemotherapy, such as poor bioavailability and toxicity to healthy cells. However, passive targeting strategies based solely on the physicochemical properties of liposomes have proven ineffective due to a lack of tissue specificity. Accordingly, the upregulation of transferrin receptors (TfRs) in brain tissue has led to the development of TfR-targeted anticancer therapeutics. Currently, one of the most widely adopted methods for improving drug delivery in the treatment of GBM and other neurological disorders is the utilization of active targeting strategies that specifically target this receptor. In this review, we discuss the role of Tf-conjugated liposomes in GBM therapy and present some recent studies investigating the drug delivery efficiency of Tf-liposomes; in addition, we address some challenges currently facing this approach to treatment and present some potential improvement possibilities.


Assuntos
Glioblastoma , Transferrina , Humanos , Lipossomos , Glioblastoma/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Encéfalo
4.
J Nanosci Nanotechnol ; 18(8): 5266-5273, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29458576

RESUMO

Metal-organic frameworks (MOFs) are highly crystalline porous organic-inorganic materials that are comprised of metal salts and organic linkers. The common synthetic methodologies of MOFs include: solvothermal, microwave-assisted, electrochemical, mechanochemical, and sonochemical routes. The synthesized MOF particles can be characterized using several characterization techniques including: X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and other analytical techniques. Recently, MOFs have garnered increasing attention due to their potential applications in numerous areas including: catalysis, gas storage and separation, drug delivery, and others. In this research paper, a new metal-organic framework was synthesized successfully from iron nitrate and 2,6-naphthalenedicarboxylic acid (1) by means of microwave irradiation (Fe-NDC-M) and (2) solvothermally using a conventional electric oven (Fe-NDC-O). They were characterized using XRD, SEM, FTIR, energy-dispersive X-ray (EDS), thermogravimetric analysis (TGA), and N2 sorption experiments. The characterization results showed that the synthesized samples were crystals with a rod-like shape. The particle diameters ranged between 50-80 nm with a length of 300-450 nm. The BJH adsorption averagepore diameters were found to be 148.551 Å and 139.265 Å for Fe-NDC-M and Fe-NDC-O, respectively. As a result, the new Fe-NDC-MOF particles can be used as nanocarriers for anticancer drug delivery applications utilizing the enhanced permeability and retention effect.


Assuntos
Portadores de Fármacos , Ferro , Nanopartículas Metálicas , Naftalenos , Estruturas Metalorgânicas
5.
J Nanosci Nanotechnol ; 16(2): 1410-4, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27433596

RESUMO

Folic acid (FA) is one of the most utilized moieties in active (ligand) drug delivery. The folate receptor is widely expressed on the surface of several cell lines and tumors; including ovarian, brain, kidney, breast, and lung cancers. During our previous experiments with Doxorubicin (Dox) encapsulated in folate-targeted micelles, we found that flow cytometry underestimated the amount of drug that accu- mulates inside cells. We attributed this effect to the quenching of Dox by FA and herein investigate this phenomenon in an attempt to obtain a correction factor that could be applied to the fluorescence of Dox in the presence of FA. Initially, we examine the effect of pH on the fluorescence spectra of FA, Dox, equimolar solutions of FA and Dox in water, HCI (0.1 M), and NaOH (0.1 M) solutions. We then measure the effect of the gradual increase of FA concentration on the fluorescence intensity of Dox in phosphate-buffered saline (PBS) solutions (pH of 7.4). Using the Stern-Volmer equation, we estimate the association constant of FA-Dox to be K(SV) = 1.5 x 10(4) M(-1). Such an association constant indicates that at the concentrations of FA used in targeted drug delivery systems, a significant concentration of Dox exists as FA-Dox complexes with a quenched fluorescence. Therefore, we conclude that when Dox is used in FA-active drug delivery systems, a correction factor is needed to predict the correct fluorescence intensity of agent in vitro and in vivo.


Assuntos
Doxorrubicina/química , Ácido Fólico/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Espectrometria de Fluorescência
6.
J Nanosci Nanotechnol ; 16(1): 1-18, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27398430

RESUMO

Nanocarriers are heavily researched as drug delivery vehicles capable of sequestering antineoplastic agents and then releasing their contents at the desired location. The feasibility of using such carriers stems from their ability to produce a multimodel delivery system whereby passive, ligand and triggered targeting can be applied in the fight against cancer. Passive targeting capitalizes on the leaky nature of tumor tissue which allows for the extravasation of particles with a size smaller than 0.5 µm into the tumors. Ligand targeting utilizes the concept of receptor-mediated endocytosis and involves the conjugation of ligands onto the surface of nanoparticles, while triggered targeting involves the use of external and internal stimuli to release the carriers contents upon reaching the diseased location. In this review, micelles and liposomes have been considered due to the promising results they have shown in vivo and in vitro and their potential for advancements into clinical trials. Thus, this review focuses on the most recent advancements in the field of micellar and liposomal drug delivery and considers the synergistic effect of passive- and ligand-targeting strategies, and the use of ultrasound in triggering drug release at the tumor site.


Assuntos
Portadores de Fármacos/uso terapêutico , Nanomedicina/métodos , Neoplasias/tratamento farmacológico , Ondas Ultrassônicas , Animais , Humanos
7.
Artigo em Inglês | MEDLINE | ID: mdl-39018211

RESUMO

The need to mitigate the adverse effects of chemotherapy has driven the exploration of innovative drug delivery approaches. One emerging trend in cancer treatment is the utilization of Drug Delivery Systems (DDSs), facilitated by nanotechnology. Nanoparticles, ranging from 1 nm to 1000 nm, act as carriers for chemotherapeutic agents, enabling precise drug delivery. The triggered release of these agents is vital for advancing this novel drug delivery system. Our research investigated this multifaceted delivery capability using liposomes and metal organic frameworks as nanocarriers and utilizing all three targeting techniques: passive, active, and triggered. Liposomes are modified using targeting ligands to render them more targeted toward certain cancers. Moieties are conjugated to the surfaces of these nanocarriers to allow for their binding to receptors overexpressed on cancer cells, thus increasing the accumulation of the agent at the tumor site. A novel class of nanocarriers, namely metal organic frameworks, has emerged, showing promise in cancer treatment. Triggering techniques (both intrinsic and extrinsic) can be used to release therapeutic agents from nanoparticles, thus enhancing the efficacy of drug delivery. In this study, we develop a predictive model combining experimental measurements with deep learning techniques. The model accurately predicts drug release from liposomes and MOFs under various conditions, including low- and high-frequency ultrasound (extrinsic triggering), microwave exposure (extrinsic triggering), ultraviolet light exposure (extrinsic triggering), and different pH levels (intrinsic triggering). The deep learning-based predictions significantly outperform linear predictions, proving the utility of advanced computational methods in drug delivery. Our findings demonstrate the potential of these nanocarriers and highlight the efficacy of deep learning models in predicting drug release behavior, paving the way for enhanced cancer treatment strategies.

8.
IEEE Trans Nanobioscience ; 23(3): 472-481, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38530728

RESUMO

Liposomes are spherical vesicles formed from bilayer lipid membranes that are extensively used in targeted drug delivery as nanocarriers to deliver therapeutic reagents to specific tissues and organs in the body. Recently, we have reported using estrone as an endogenous ligand on doxorubicin-encapsulating liposomes to target estrogen receptor (ER)-positive breast cancer cells. Estrone liposomes were synthesized using the thin-film hydration method, which is a long, arduous, and multistep process. Here, we report using a herringbone micromixer to synthesize estrone liposomes in a simple and rapid manner. A solvent stream containing the lipids was mixed with a stream of phosphate buffer saline (PBS) inside a microchannel integrated with herringbone-shaped ridges that enhanced the mixing of the two streams. The small scale involved enabled rapid solvent exchange and initiated the self-assembly of the lipids to form the required liposomes. The effect of different parameters on liposome size, such as the ratio between the flow rate of the solvent and the buffer solutions (FRR), total flow rate, lipid concentrations, and solvent type, were investigated. Using this commercially available chip, we obtained liposomes with a radius of 66.1 ± 11.2 nm (mean ± standard deviation) and a polydispersity of 22% in less than 15 minutes compared to a total of  âˆ¼  11 hours using conventional techniques. Calcein was encapsulated inside the prepared liposomes as a model drug and was released by applying ultrasound at different powers. The size of the prepared liposomes was stable over a period of one month. Overall, using microfluidics to synthesize estrone liposomes simplified the procedure considerably and improved the reproducibility of the resulting liposomes.


Assuntos
Estrona , Lipossomos , Lipossomos/química , Estrona/química , Humanos , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/administração & dosagem
9.
Heliyon ; 10(6): e27882, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524567

RESUMO

Achieving an optimal therapeutic level is crucial in effectively eradicating cancer cells during treatment. However, conventional chemotherapy-associated systemic administration of anticancer agents leads to many side effects. To achieve the desired control over the target site, active targeting of HER2-positive breast cancer cells can be achieved by conjugating liposomal vesicles with Human Epidermal growth factor Receptor 2 (HER2) and inducing release of the encapsulated drug using ultrasound. To further enhance the delivery efficiency, nanoemulsion droplets exhibiting responsiveness to low-frequency ultrasound are encapsulated within these lipid vesicles. In this study, we prepared four different liposomal formulations, namely pegylated liposomes, emulsion liposomes (eLiposomes), HER-conjugated liposomes, and HER-conjugated eLiposomes, each loaded with calcein and subjected to a thorough characterization process. Their sizes, phospholipid concentration, and amount of antibody conjugation were compared and analyzed. Cryogenic transmission electron microscopy was used to confirm the encapsulation of nanoemulsion droplets within the liposomes. The drug-releasing performance of Herceptin-conjugated eLiposomes was found to surpass that of other liposomal formulations with a notably higher calcein release and established it as a highly effective nanocarrier. The study showcases the efficacy of calcein-loaded and Herceptin-conjugated eLiposomes, which demonstrate rapid and efficient drug release among other liposomal formulations when subjected to ultrasound. This discovery paves the way for a more targeted, efficient, and humane approach to cancer therapy.

10.
Heliyon ; 10(10): e31402, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38807869

RESUMO

Brain cancers are some of the most complex diseases to treat, despite the numerous advances science has made in cancer chemotherapy and research. One of the key obstacles to identifying potential cures for this disease is the difficulty in emulating the complexity of the brain and the surrounding microenvironment to understand potential therapeutic approaches. This paper discusses some of the most important in vitro, in vivo, and microfluidic brain tumor models that aim to address these challenges.

11.
Sci Rep ; 14(1): 10499, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714740

RESUMO

Improving the efficacy of chemotherapy remains a key challenge in cancer treatment, considering the low bioavailability, high cytotoxicity, and undesirable side effects of some clinical drugs. Targeted delivery and sustained release of therapeutic drugs to cancer cells can reduce the whole-body cytotoxicity of the agent and deliver a safe localized treatment to the patient. There is growing interest in herbal drugs, such as curcumin, which is highly noted as a promising anti-tumor drug, considering its wide range of bioactivities and therapeutic properties against various tumors. Conversely, the clinical efficacy of curcumin is limited because of poor oral bioavailability, low water solubility, instability in gastrointestinal fluids, and unsuitable pH stability. Drug-delivery colloid vehicles like liposomes and nanoparticles combined with microbubbles and ultrasound-mediated sustained release are currently being explored as effective delivery modes in such cases. This study aimed to synthesize and study the properties of curcumin liposomes (CLs) and optimize the high-frequency ultrasound release and uptake by a human breast cancer cell line (HCC 1954) through in vitro studies of culture viability and cytotoxicity. CLs were effectively prepared with particles sized at 81 ± 2 nm, demonstrating stability and controlled release of curcumin under ultrasound exposure. In vitro studies using HCC1954 cells, the combination of CLs, ultrasound, and Definity microbubbles significantly improved curcumin's anti-tumor effects, particularly under specific conditions: 15 s of continuous ultrasound at 0.12 W/cm2 power density with 0.6 × 107 microbubbles/mL. Furthermore, the study delved into curcumin liposomes' cytotoxic effects using an Annexin V/PI-based apoptosis assay. The treatment with CLs, particularly in conjunction with ultrasound and microbubbles, amplified cell apoptosis, mainly in the late apoptosis stage, which was attributed to heightened cellular uptake within cancer cells.


Assuntos
Curcumina , Sistemas de Liberação de Medicamentos , Lipossomos , Curcumina/farmacologia , Curcumina/química , Curcumina/administração & dosagem , Humanos , Lipossomos/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Microbolhas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Ondas Ultrassônicas , Liberação Controlada de Fármacos , Apoptose/efeitos dos fármacos
12.
Pharmaceutics ; 15(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36839744

RESUMO

To improve currently available cancer treatments, nanomaterials are employed as smart drug delivery vehicles that can be engineered to locally target cancer cells and respond to stimuli. Nanocarriers can entrap chemotherapeutic drugs and deliver them to the diseased site, reducing the side effects associated with the systemic administration of conventional anticancer drugs. Upon accumulation in the tumor cells, the nanocarriers need to be potentiated to release their therapeutic cargo. Stimulation can be through endogenous or exogenous modalities, such as temperature, electromagnetic irradiation, ultrasound (US), pH, or enzymes. This review discusses the acoustic stimulation of different sonosensitive liposomal formulations. Emulsion liposomes, or eLiposomes, are liposomes encapsulating phase-changing nanoemulsion droplets, which promote acoustic droplet vaporization (ADV) upon sonication. This gives eLiposomes the advantage of delivering the encapsulated drug at low intensities and short exposure times relative to liposomes. Other formulations integrating microbubbles and nanobubbles are also discussed.

13.
Nanomaterials (Basel) ; 13(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37764594

RESUMO

Cancer is one of the leading causes of death worldwide. Because each person's cancer may be unique, diagnosing and treating cancer is challenging. Advances in nanomedicine have made it possible to detect tumors and quickly investigate tumor cells at a cellular level in contrast to prior diagnostic techniques. Quantum dots (QDs) are functional nanoparticles reported to be useful for diagnosis. QDs are semiconducting tiny nanocrystals, 2-10 nm in diameter, with exceptional and useful optoelectronic properties that can be tailored to sensitively report on their environment. This review highlights these exceptional semiconducting QDs and their properties and synthesis methods when used in cancer diagnostics. The conjugation of reporting or binding molecules to the QD surface is discussed. This review summarizes the most recent advances in using QDs for in vitro imaging, in vivo imaging, and targeted drug delivery platforms in cancer applications.

14.
Heliyon ; 9(11): e21227, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954330

RESUMO

The past decade has witnessed a breakthrough in novel strategies to treat cancer. One of the most common cancer treatment modalities is chemotherapy which involves administering anti-cancer drugs to the body. However, these drugs can lead to undesirable side effects on healthy cells. To overcome this challenge and improve cancer cell targeting, many novel nanocarriers have been developed to deliver drugs directly to the cancerous cells and minimize effects on the healthy tissues. The majority of the research studies conclude that using drugs encapsulated in nanocarriers is a much safer and more effective alternative than delivering the drug alone in its free form. This review provides a summary of the types of nanocarriers mainly studied for cancer drug delivery, namely: liposomes, polymeric micelles, dendrimers, magnetic nanoparticles, mesoporous nanoparticles, gold nanoparticles, carbon nanotubes and quantum dots. In this review, the synthesis, applications, advantages, disadvantages, and previous studies of these nanomaterials are discussed in detail. Furthermore, the future opportunities and possible challenges of translating these materials into clinical applications are also reported.

15.
Pharmaceuticals (Basel) ; 16(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37630971

RESUMO

Due to their biocompatibility, non-toxicity, and surface-conjugation capabilities, liposomes are effective nanocarriers that can encapsulate chemotherapeutic drugs and facilitate targeted delivery across the blood-brain barrier (BBB). Additionally, strategies have been explored to synthesize liposomes that respond to internal and/or external stimuli to release their payload controllably. Although research into liposomes for brain cancer treatment is still in its infancy, these systems have great potential to fundamentally change the drug delivery landscape. This review paper attempts to consolidate relevant literature regarding the delivery to the brain using nanocarriers, particularly liposomes. The paper first briefly explains conventional treatment modalities for cancer, followed by describing the blood-brain barrier and ways, challenges, and techniques involved in transporting drugs across the BBB. Various nanocarrier systems are introduced, with attention to liposomes, due to their ability to circumvent the challenges imposed by the BBB. Relevant studies involving liposomal systems researched to treat brain tumors are reviewed in vitro, in vivo, and clinical studies. Finally, the challenges associated with the use of liposomes to treat brain tumors and how they can be addressed are presented.

16.
Artigo em Inglês | MEDLINE | ID: mdl-36673694

RESUMO

Diabetes is sweeping the world as a silent epidemic, posing a growing threat to public health. Modeling diabetes is an effective method to monitor the increasing prevalence of diabetes and develop cost-effective strategies that control the incidence of diabetes and its complications. This paper focuses on a mathematical model known as the diabetes complication (DC) model. The DC model is analyzed using different numerical methods to monitor the diabetic population over time. This is by analyzing the model using five different numerical methods. Furthermore, the effect of the time step size and the various parameters affecting the diabetic situation is examined. The DC model is dependent on some parameters whose values play a vital role in the convergence of the model. Thus, parametric analysis was implemented and later discussed in this paper. Essentially, the Runge-Kutta (RK) method provides the highest accuracy. Moreover, Adam-Moulton's method also provides good results. Ultimately, a comprehensive understanding of the development of diabetes complications after diagnosis is provided in this paper. The results can be used to understand how to improve the overall public health of a country, as governments ought to develop effective strategic initiatives for the screening and treatment of diabetes.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Humanos , Diabetes Mellitus/epidemiologia , Complicações do Diabetes/epidemiologia , Modelos Teóricos , Prevalência , Incidência
17.
Sci Rep ; 13(1): 16644, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789072

RESUMO

Liposomes are the most successful nanoparticles used to date to load and deliver chemotherapeutic agents to cancer cells. They are nano-sized vesicles made up of phospholipids, and targeting moieties can be added to their surfaces for the active targeting of specific tumors. Furthermore, Ultrasound can be used to trigger the release of the loaded drugs by disturbing their phospholipid bilayer structure. In this study, we have prepared pegylated liposomes using four types of phospholipids with similar saturated hydrocarbon tails including a phospholipid with no head group attached to the phosphate head (DPPA) and three other phospholipids with different head groups attached to their phosphate heads (DPPC, DPPE and DPPG). The prepared liposomes were conjugated to the monoclonal antibody trastuzumab (TRA) to target the human epidermal growth factor receptor 2 (HER2) overexpressed on HER2-positive cancer cells (HER2+). We have compared the response of the different formulations of liposomes when triggered with low-frequency ultrasound (LFUS) and their cellular uptake by the cancer cells. The results showed that the different formulations had similar size, polydispersity, and stability. TRA-conjugated DPPC liposomes showed the highest sensitivity to LFUS. On the other hand, incubating the cancer cells with TRA-conjugated DPPA liposomes triggered with LFUS showed the highest uptake of the loaded calcein by the HER2+ cells.


Assuntos
Lipossomos , Fosfolipídeos , Humanos , Lipossomos/química , Liberação Controlada de Fármacos , Trastuzumab/farmacologia , Fosfatos , Sistemas de Liberação de Medicamentos
18.
Membranes (Basel) ; 13(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37505052

RESUMO

Membrane fouling is a major hurdle to effective pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Fouling refers to the accumulation of particles, organic and inorganic matter, and microbial cells on the membrane's external and internal surface, which reduces the permeate flux and increases the needed transmembrane pressure. Various factors affect membrane fouling, including feed water quality, membrane characteristics, operating conditions, and cleaning protocols. Several models have been developed to predict membrane fouling in pressure-driven processes. These models can be divided into traditional empirical, mechanistic, and artificial intelligence (AI)-based models. Artificial neural networks (ANNs) are powerful tools for nonlinear mapping and prediction, and they can capture complex relationships between input and output variables. In membrane fouling prediction, ANNs can be trained using historical data to predict the fouling rate or other fouling-related parameters based on the process parameters. This review addresses the pertinent literature about using ANNs for membrane fouling prediction. Specifically, complementing other existing reviews that focus on mathematical models or broad AI-based simulations, the present review focuses on the use of AI-based fouling prediction models, namely, artificial neural networks (ANNs) and their derivatives, to provide deeper insights into the strengths, weaknesses, potential, and areas of improvement associated with such models for membrane fouling prediction.

19.
Nanomaterials (Basel) ; 12(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055294

RESUMO

Metal-organic frameworks (MOFs) are a novel class of porous hybrid organic-inorganic materials that have attracted increasing attention over the past decade. MOFs can be used in chemical engineering, materials science, and chemistry applications. Recently, these structures have been thoroughly studied as promising platforms for biomedical applications. Due to their unique physical and chemical properties, they are regarded as promising candidates for disease diagnosis and drug delivery. Their well-defined structure, high porosity, tunable frameworks, wide range of pore shapes, ultrahigh surface area, relatively low toxicity, and easy chemical functionalization have made them the focus of extensive research. This review highlights the up-to-date progress of MOFs as potential platforms for disease diagnosis and drug delivery for a wide range of diseases such as cancer, diabetes, neurological disorders, and ocular diseases. A brief description of the synthesis methods of MOFs is first presented. Various examples of MOF-based sensors and DDSs are introduced for the different diseases. Finally, the challenges and perspectives are discussed to provide context for the future development of MOFs as efficient platforms for disease diagnosis and drug delivery systems.

20.
Nanomaterials (Basel) ; 12(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080088

RESUMO

Efficient conventional chemotherapy is limited by its nonspecific nature, which causes severe systemic toxicity that can lead to patient discomfort and low therapeutic efficacy. The emergence of smart drug delivery systems (SDDSs) utilizing nanoparticles as drug nanocarriers has shown great potential in enhancing the targetability of anticancer agents and limiting their side effects. Liposomes are among the most investigated nanoplatforms due to their promising capabilities of encapsulating hydrophilic, lipophilic, and amphiphilic drugs, biocompatibility, physicochemical and biophysical properties. Liposomal nanodrug systems have demonstrated the ability to alter drugs' biodistribution by sufficiently delivering the entrapped chemotherapeutics at the targeted diseased sites, sparing normal cells from undesired cytotoxic effects. Combining liposomal treatments with ultrasound, as an external drug release triggering modality, has been proven effective in spatially and temporally controlling and stimulating drug release. Therefore, this paper reviews recent literature pertaining to the therapeutic synergy of triggering nanodrugs from liposomes using ultrasound. It also highlights the effects of multiple physical and chemical factors on liposomes' sonosensetivity, several ultrasound-induced drug release mechanisms, and the efficacy of ultrasound-responsive liposomal systems in cancer therapy. Overall, liposomal nanodrug systems triggered by ultrasound are promising cancer therapy platforms that can potentially alleviate the detriments of conventional cancer treatments.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa