Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34684865

RESUMO

The demand for natural fungicides to replace synthetic ones has surged since toxic residues persist in soils, causing environmental contamination and posing a serious threat to worldwide public health. In the context of crop protection and enhancing the efficiency and safety of fungicides, nanotechnology is an eco-friendly strategy in managing fungal pathogens. In the present study, essential oils were isolated from the peels of four citrus fruits (Citrus lemon, Citrus aurantifolia, Citrus maxima, and Citrus sinensis) and were investigated using gas chromatography-mass spectrometric analysis. Monoterpene hydrocarbon was the most predominant group and limonene was the most abundant in the four oils. The antifungal potential of the oils was investigated, and the most active oil (Citrus lemon) was loaded into hexosomal dispersion, and its antifungal potential was retested against the same fungi. The structurally unique nano-based formulation showed great potency for fungal control. To the best of our knowledge, it is the first time the oil of Citrus lemon in nano-hexosomes has been formulated and its fungicidal activity examined. The data collected suggest that citrus essential oils (CEOs), especially when nano-formulated, could be successfully used in integrated fungus management programs.


Assuntos
Antifúngicos/química , Citrus/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Plantas/microbiologia , Antifúngicos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Nanotecnologia , Óleos Voláteis/química , Óleos de Plantas/química
2.
Saudi J Biol Sci ; 30(12): 103843, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38020231

RESUMO

Contemporary agriculture heavily relies on pesticides for pest eradication and disease management. Consequently, current study was carried out to assess the acaricidal/antifungal efficacy of emulsifiable concentrate (10 % EC) derived from Boswellia carterii (B. carterii) against adult females of Tetranychus urticae (T. urticae), and five fungal pathogens. The meticulous examination of the chemical constitution of the crude extracts derived from the resin of B. carterii was conducted through the employment of the venerable technique known as Gas-Liquid Chromatography (GLC). The formulated petroleum-ether extract (FPEE) and formulated ethyl-acetate extract (FEAE) of B. carterii at a concentration of 10 mg ml-1 exhibited notable antioxidant activity with rates of 62.0 % and 90.8 %, respectively. In vitro, the FEAE exhibited potent inhibition against all the tested phytopathogenic fungi at different concentrations, whereas FPEE showed comparatively less efficacy. Interestingly, at 4000 ppm concentration, FEAE completely ceased the mycelial growth compared with the control. Moreover, following a span of 72 h of intervention, FPEE exhibited a greater degree of toxicity towards mature females of the T. urticae. This was evidenced by the LC50 value of 422.52 parts per million (ppm) for FPEE, which surpassed the LC50 value of 539.50 ppm observed for FEAE. In summary, the present study indicates that B. carterii resin formulated as an emulsifiable concentrate (10 % EC) can offer a natural and effective alternative for integrated pest management, thereby reducing reliance on synthetic pesticides and offering a more environmentally sustainable strategy for pest control.

3.
Plants (Basel) ; 11(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559653

RESUMO

Globally, root rot disease of tomato plants caused by Sclerotium rolfsii is a severe disease leading to the death of infected plants. The effect of some commercial antiseptics and disinfectant agents, such as chloroxylenol (10%), phenic (10%) and formulated phenol (7%) on the control of root rot pathogen and its impact on growth and chemical constituents of tomato seedlings cv. Castle Rock were investigated in vitro and in vivo. The antifungal activity was measured in vitro following the poisoned food technique at different concentrations of 1000, 2000, 3000 and 4000 µL/L. Disinfectant agents and atrio (80%) were tested in vivo by soaking 20-day-old tomato seedlings in four concentrations of 125, 250, 500 and 1000 µL/100 mL water for 5 min and thereafter planting in soil infested by S. rolfsii. Fresh and dry weight, shoot and root length, and chemical constituents of tomato seedlings infected by S. rolfsii were investigated at 35 days after planting (DAP). Experimental results indicated that chloroxylenol (10%) was the most effective on fungus in vitro, recorded an effective concentration (EC50 = 1347.74 µL/L) followed by phenic (10%) (EC50 = 1370.52 µL/L) and formulated phenol (7%) (EC50 = 1553.59 µL/L). In vivo, atrio (80%) and disinfectant agents at different concentrations significantly (p ≤ 0.05) reduced disease incidence, increased shoot and root lengths and increased dry and fresh weight. Additionally, it significantly increased chlorophyll a, chlorophyll b, total carotenoids, total carbohydrates, total proteins, and total phenols. The highest reduction of root rot incidence and increase tomato growth parameters, as well as chemical compositions, were recorded on tomato seedlings treated with atrio (80%) as well as formulated phenol (7%) at different concentrations, followed by chloroxylenol (10%) at 125 and 250 µL/100 mL, whereas phenic (10%) was found to be the least effective treatment. Therefore, the application of formulated phenol (7%) could be commercially used to control tomato root rot diseases and increase the quality and quantity of tomato plants since it is promising against the pathogen, safe, and less expensive than fungicides.

4.
Nat Prod Res ; 35(14): 2438-2443, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31596140

RESUMO

Development of natural nano-based plant-protection formulations represents an emerging phenomenon that has been widely improved for crops protection and for enhancing the efficiency and safety of pesticides. In the present study we isolated the essential oil from the fruits of Citrus trifoliata L. and investigated it using gas chromatography-mass spectrometry analysis. Limonene (78.46%) was the major component followed by ß-Myrcene (7.94%) and Caryophyllene (4.20%). Citrus trifoliata essential oil (CTEO) loaded nano-cubosomes were successfully prepared by the emulsification technique. The insecticidal and fungicidal activities of formulated CTEO nano-cubosomes and unformulated CTEO were tested. While both of them exhibited substantial activities, CTEO nano-cubosomes were more effective than unformulated oil. It is the first time to formulate CTEO in nano-cubosomes and examine their insecticidal and fungicidal activities. In light of the current study, CTEO as it is or as nano-cubosomes is recommended as a promising candidate for pest and fungal pathogens control.Supplemental data for this article can be accessed at https://doi.org/10.1080/14786419.2019.1675063.


Assuntos
Citrus/química , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Inseticidas/farmacologia , Nanopartículas/química , Óleos Voláteis/farmacologia , Spodoptera/efeitos dos fármacos , Animais , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Óleos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa