RESUMO
Patients with chronic kidney disease (CKD) exhibit tremendously elevated risk for cardiovascular disease, particularly ischemic heart disease, due to premature vascular and cardiac aging and accelerated ectopic calcification. The presence of cardiovascular calcification associates with increased risk in patients with CKD. Disturbed mineral homeostasis and diverse comorbidities in these patients drive increased systemic cardiovascular calcification in different manifestations with diverse clinical consequences, like plaque instability, vessel stiffening, and aortic stenosis. This review outlines the heterogeneity in calcification patterning, including mineral type and location and potential implications on clinical outcomes. The advent of therapeutics currently in clinical trials may reduce CKD-associated morbidity. Development of therapeutics for cardiovascular calcification begins with the premise that less mineral is better. While restoring diseased tissues to a noncalcified homeostasis remains the ultimate goal, in some cases, calcific mineral may play a protective role, such as in atherosclerotic plaques. Therefore, developing treatments for ectopic calcification may require a nuanced approach that considers individual patient risk factors. Here, we discuss the most common cardiac and vascular calcification pathologies observed in CKD, how mineral in these tissues affects function, and the potential outcomes and considerations for therapeutic strategies that seek to disrupt the nucleation and growth of mineral. Finally, we discuss future patient-specific considerations for treating cardiac and vascular calcification in patients with CKD-a population in need of anticalcification therapies.
Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Insuficiência Renal Crônica/complicações , Calcificação Vascular/etiologia , Doenças Cardiovasculares/etiologia , Minerais , EnvelhecimentoRESUMO
Vascular calcification predicts atherosclerotic plaque rupture and cardiovascular events. Retrospective studies of women taking bisphosphonates (BiPs), a proposed therapy for vascular calcification, showed that BiPs paradoxically increased morbidity in patients with prior acute cardiovascular events but decreased mortality in event-free patients. Calcifying extracellular vesicles (EVs), released by cells within atherosclerotic plaques, aggregate and nucleate calcification. We hypothesized that BiPs block EV aggregation and modify existing mineral growth, potentially altering microcalcification morphology and the risk of plaque rupture. Three-dimensional (3D) collagen hydrogels incubated with calcifying EVs were used to mimic fibrous cap calcification in vitro, while an ApoE-/- mouse was used as a model of atherosclerosis in vivo. EV aggregation and formation of stress-inducing microcalcifications was imaged via scanning electron microscopy (SEM) and atomic force microscopy (AFM). In both models, BiP (ibandronate) treatment resulted in time-dependent changes in microcalcification size and mineral morphology, dependent on whether BiP treatment was initiated before or after the expected onset of microcalcification formation. Following BiP treatment at any time, microcalcifications formed in vitro were predicted to have an associated threefold decrease in fibrous cap tensile stress compared to untreated controls, estimated using finite element analysis (FEA). These findings support our hypothesis that BiPs alter EV-driven calcification. The study also confirmed that our 3D hydrogel is a viable platform to study EV-mediated mineral nucleation and evaluate potential therapies for cardiovascular calcification.
Assuntos
Calcinose/induzido quimicamente , Difosfonatos/efeitos adversos , Vesículas Extracelulares/efeitos dos fármacos , Placa Aterosclerótica/complicações , Calcificação Vascular/induzido quimicamente , Animais , Células Cultivadas , Análise de Elementos Finitos , Humanos , Hidrogéis , Técnicas In Vitro , Camundongos , Camundongos Knockout para ApoERESUMO
AIMS: Calcific aortic valve disease (CAVD) is the most common valve disease, which consists of a chronic interplay of inflammation, fibrosis, and calcification. In this study, sortilin (SORT1) was identified as a novel key player in the pathophysiology of CAVD, and its role in the transformation of valvular interstitial cells (VICs) into pathological phenotypes is explored. METHODS AND RESULTS: An aortic valve (AV) wire injury (AVWI) mouse model with sortilin deficiency was used to determine the effects of sortilin on AV stenosis, fibrosis, and calcification. In vitro experiments employed human primary VICs cultured in osteogenic conditions for 7, 14, and 21 days; and processed for imaging, proteomics, and transcriptomics including single-cell RNA-sequencing (scRNA-seq). The AVWI mouse model showed reduced AV fibrosis, calcification, and stenosis in sortilin-deficient mice vs. littermate controls. Protein studies identified the transition of human VICs into a myofibroblast-like phenotype mediated by sortilin. Sortilin loss-of-function decreased in vitro VIC calcification. ScRNA-seq identified 12 differentially expressed cell clusters in human VIC samples, where a novel combined inflammatory myofibroblastic-osteogenic VIC (IMO-VIC) phenotype was detected with increased expression of SORT1, COL1A1, WNT5A, IL-6, and serum amyloid A1. VICs sequenced with sortilin deficiency showed decreased IMO-VIC phenotype. CONCLUSION: Sortilin promotes CAVD by mediating valvular fibrosis and calcification, and a newly identified phenotype (IMO-VIC). This is the first study to examine the role of sortilin in valvular calcification and it may render it a therapeutic target to inhibit IMO-VIC emergence by simultaneously reducing inflammation, fibrosis, and calcification, the three key pathological processes underlying CAVD.
Assuntos
Estenose da Valva Aórtica , Calcinose , Humanos , Animais , Camundongos , Estenose da Valva Aórtica/genética , Valva Aórtica/patologia , Calcinose/metabolismo , Constrição Patológica , Células Cultivadas , FibroseRESUMO
Chronic kidney disease (CKD) increases the risk of cardiovascular disease, including vascular calcification, leading to higher mortality. The release of calcifying extracellular vesicles (EVs) by vascular smooth muscle cells (VSMCs) promotes ectopic mineralization of vessel walls. Caveolin-1 (CAV1), a structural protein in the plasma membrane, plays a major role in calcifying EV biogenesis in VSMCs. Epidermal growth factor receptor (EGFR) colocalizes with and influences the intracellular trafficking of CAV1. Using a diet-induced mouse model of CKD followed by a high-phosphate diet to promote vascular calcification, we assessed the potential of EGFR inhibition to prevent vascular calcification. Furthermore, we computationally analyzed 7,651 individuals in the Multi-Ethnic Study of Atherosclerosis (MESA) and Framingham cohorts to assess potential correlations between coronary artery calcium and single-nucleotide polymorphisms (SNPs) associated with elevated serum levels of EGFR. Mice with CKD developed widespread vascular calcification, associated with increased serum levels of EGFR. In both the CKD mice and human VSMC culture, EGFR inhibition significantly reduced vascular calcification by mitigating the release of CAV1-positive calcifying EVs. EGFR inhibition also increased bone mineral density in CKD mice. Individuals in the MESA and Framingham cohorts with SNPs associated with increased serum EGFR exhibit elevated coronary artery calcium. Given that EGFR inhibitors exhibit clinical safety and efficacy in other pathologies, the current data suggest that EGFR may represent an ideal target to prevent pathological vascular calcification in CKD.NEW & NOTEWORTHY Here, we investigate the potential of epidermal growth factor receptor (EGFR) inhibition to prevent vascular calcification, a leading indicator of and contributor to cardiovascular morbidity and mortality. EGFR interacts and affects the trafficking of the plasma membrane scaffolding protein caveolin-1. Previous studies reported a key role for caveolin-1 in the development of specialized extracellular vesicles that mediate vascular calcification; however, no role of EGFR has been reported. We demonstrated that EGFR inhibition modulates caveolin-1 trafficking and hinders calcifying extracellular vesicle formation, which prevents vascular calcification. Given that EGFR inhibitors are clinically approved for other indications, this may represent a novel therapeutic strategy for vascular calcification.
Assuntos
Aterosclerose , Vesículas Extracelulares , Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Camundongos , Animais , Caveolina 1/metabolismo , Cálcio/metabolismo , Músculo Liso Vascular/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/prevenção & controle , Receptores ErbB/genética , Receptores ErbB/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Membrana/metabolismo , Aterosclerose/metabolismo , Miócitos de Músculo Liso/metabolismoRESUMO
Calcific aortic valve disease (CAVD) occurs when subpopulations of valve cells undergo specific differentiation pathways, promoting tissue fibrosis and calcification. Lipoprotein particles carry oxidized lipids that promote valvular disease, but low-density lipoprotein-lowering therapies have failed in clinical trials, and there are currently no pharmacological interventions available for this disease. Apolipoproteins are known promoters of atherosclerosis, but whether they possess pathogenic properties in CAVD is less clear. To search for a possible link, we assessed 12 apolipoproteins in nonfibrotic/noncalcific and fibrotic/calcific aortic valve tissues by proteomics and immunohistochemistry to understand if they were enriched in calcified areas. Eight apolipoproteins (apoA-I, apoA-II, apoA-IV, apoB, apoC-III, apoD, apoL-I, and apoM) were enriched in the calcific versus nonfibrotic/noncalcific tissues. Apo(a), apoB, apoC-III, apoE, and apoJ localized within the disease-prone fibrosa and colocalized with calcific regions as detected by immunohistochemistry. Circulating apoC-III on lipoprotein(a) is a potential biomarker of aortic stenosis incidence and progression, but whether apoC-III also induces aortic valve calcification is unknown. We found that apoC-III was increased in fibrotic and calcific tissues and observed within the calcification-prone fibrosa layer as well as around calcification. In addition, we showed that apoC-III induced calcification in primary human valvular cell cultures via a mitochondrial dysfunction/inflammation-mediated pathway. This study provides a first assessment of a broad array of apolipoproteins in CAVD tissues, demonstrates that specific apolipoproteins associate with valvular calcification, and implicates apoC-III as an active and modifiable driver of CAVD beyond its potential role as a biomarker.
Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/patologia , Apolipoproteína C-III/metabolismo , Calcinose/metabolismo , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Apolipoproteína C-III/análise , Calcinose/patologia , Células Cultivadas , Humanos , Inflamação/metabolismo , Inflamação/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologiaRESUMO
Understanding aortic valve (AV) mechanics is crucial in elucidating both the mechanisms that drive the manifestation of valvular diseases as well as the development of treatment modalities that target these processes. Genetically modified mouse models have become the gold standard in assessing biological mechanistic influences of AV development and disease. However, very little is known about mouse aortic valve leaflet (MAVL) tensile properties due to their microscopic size (â¼500 µm long and 45 µm thick) and the lack of proper mechanical testing modalities to assess uniaxial and biaxial tensile properties of the tissue. We developed a method in which the biaxial tensile properties of MAVL tissues can be assessed by adhering the tissues to a silicone rubber membrane utilizing dopamine as an adhesive. Applying equiaxial tensile loads on the tissue-membrane composite and tracking the engineering strains on the surface of the tissue resulted in the characteristic orthotropic response of AV tissues seen in human and porcine tissues. Our data suggest that the circumferential direction is stiffer than the radial direction (n = 6, P = 0.0006) in MAVL tissues. This method can be implemented in future studies involving longitudinal mechanical stimulation of genetically modified MAVL tissues bridging the gap between cellular biological mechanisms and valve mechanics in popular mouse models of valve disease.
Assuntos
Valva Aórtica , Estresse Mecânico , Animais , SuínosRESUMO
BACKGROUND: No pharmacological therapy exists for calcific aortic valve disease (CAVD), which confers a dismal prognosis without invasive valve replacement. The search for therapeutics and early diagnostics is challenging because CAVD presents in multiple pathological stages. Moreover, it occurs in the context of a complex, multi-layered tissue architecture; a rich and abundant extracellular matrix phenotype; and a unique, highly plastic, and multipotent resident cell population. METHODS: A total of 25 human stenotic aortic valves obtained from valve replacement surgeries were analyzed by multiple modalities, including transcriptomics and global unlabeled and label-based tandem-mass-tagged proteomics. Segmentation of valves into disease stage-specific samples was guided by near-infrared molecular imaging, and anatomic layer-specificity was facilitated by laser capture microdissection. Side-specific cell cultures were subjected to multiple calcifying stimuli, and their calcification potential and basal/stimulated proteomes were evaluated. Molecular (protein-protein) interaction networks were built, and their central proteins and disease associations were identified. RESULTS: Global transcriptional and protein expression signatures differed between the nondiseased, fibrotic, and calcific stages of CAVD. Anatomic aortic valve microlayers exhibited unique proteome profiles that were maintained throughout disease progression and identified glial fibrillary acidic protein as a specific marker of valvular interstitial cells from the spongiosa layer. CAVD disease progression was marked by an emergence of smooth muscle cell activation, inflammation, and calcification-related pathways. Proteins overrepresented in the disease-prone fibrosa are functionally annotated to fibrosis and calcification pathways, and we found that in vitro, fibrosa-derived valvular interstitial cells demonstrated greater calcification potential than those from the ventricularis. These studies confirmed that the microlayer-specific proteome was preserved in cultured valvular interstitial cells, and that valvular interstitial cells exposed to alkaline phosphatase-dependent and alkaline phosphatase-independent calcifying stimuli had distinct proteome profiles, both of which overlapped with that of the whole tissue. Analysis of protein-protein interaction networks found a significant closeness to multiple inflammatory and fibrotic diseases. CONCLUSIONS: A spatially and temporally resolved multi-omics, and network and systems biology strategy identifies the first molecular regulatory networks in CAVD, a cardiac condition without a pharmacological cure, and describes a novel means of systematic disease ontology that is broadly applicable to comprehensive omics studies of cardiovascular diseases.
Assuntos
Estenose da Valva Aórtica/genética , Valva Aórtica/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Mapas de Interação de Proteínas , Proteômica/métodos , Espectrometria de Massas em Tandem , Transcriptoma , Valva Aórtica/patologia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Estudos de Casos e Controles , Células Cultivadas , Fibrose , Regulação da Expressão Gênica , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Índice de Gravidade de Doença , Transdução de Sinais/genéticaRESUMO
RATIONALE: Mitochondrial changes occur during cell differentiation and cardiovascular disease. DRP1 (dynamin-related protein 1) is a key regulator of mitochondrial fission. We hypothesized that DRP1 plays a role in cardiovascular calcification, a process involving cell differentiation and a major clinical problem with high unmet needs. OBJECTIVE: To examine the effects of osteogenic promoting conditions on DRP1 and whether DRP1 inhibition alters the development of cardiovascular calcification. METHODS AND RESULTS: DRP1 was enriched in calcified regions of human carotid arteries, examined by immunohistochemistry. Osteogenic differentiation of primary human vascular smooth muscle cells increased DRP1 expression. DRP1 inhibition in human smooth muscle cells undergoing osteogenic differentiation attenuated matrix mineralization, cytoskeletal rearrangement, mitochondrial dysfunction, and reduced type 1 collagen secretion and alkaline phosphatase activity. DRP1 protein was observed in calcified human aortic valves, and DRP1 RNA interference reduced primary human valve interstitial cell calcification. Mice heterozygous for Drp1 deletion did not exhibit altered vascular pathology in a proprotein convertase subtilisin/kexin type 9 gain-of-function atherosclerosis model. However, when mineralization was induced via oxidative stress, DRP1 inhibition attenuated mouse and human smooth muscle cell calcification. Femur bone density was unchanged in mice heterozygous for Drp1 deletion, and DRP1 inhibition attenuated oxidative stress-mediated dysfunction in human bone osteoblasts. CONCLUSIONS: We demonstrate a new function of DRP1 in regulating collagen secretion and cardiovascular calcification, a novel area of exploration for the potential development of new therapies to modify cellular fibrocalcific response in cardiovascular diseases. Our data also support a role of mitochondrial dynamics in regulating oxidative stress-mediated arterial calcium accrual and bone loss.
Assuntos
GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/biossíntese , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/biossíntese , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo/fisiologia , Calcificação Vascular/metabolismo , Calcificação Vascular/prevenção & controle , Animais , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/prevenção & controle , Células Cultivadas , Colágeno/metabolismo , Dinaminas , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Estresse Oxidativo/efeitos dos fármacos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Calcificação Vascular/patologiaRESUMO
PURPOSE OF REVIEW: Extracellular vesicles have emerged as one of the most important means through which cells interact with each other and the extracellular environment, but extracellular vesicle research remains challenging due to their small size, limited amount of material required for traditional molecular biology assays and inconsistency in the methods of their isolation. The advent of new technologies and standards in the field, however, have led to increased mechanistic insight into extracellular vesicle function. Herein, the latest studies on the role of extracellular vesicles in cardiovascular physiology and disease are discussed. RECENT FINDINGS: Extracellular vesicles help control cardiovascular homeostasis and remodelling by mediating communication between cells and directing alterations in the extracellular matrix to respond to changes in the environment. The message carried from the parent cell to extracellular space can be intended for both local (within the same tissue) and distal (downstream of blood flow) targets. Pathological cargo loaded within extracellular vesicles could further result in various diseases. On the contrary, new studies indicate that injection of extracellular vesicles obtained from cultured cells into diseased tissues can promote restoration of normal tissue function. SUMMARY: Extracellular vesicles are an integral part of cell and tissue function, and harnessing the properties inherent to extracellular vesicles may provide a therapeutic strategy to promote tissue regeneration.
Assuntos
Doenças Cardiovasculares/metabolismo , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Doenças Cardiovasculares/patologia , Exossomos/metabolismo , Exossomos/patologia , Homeostase , HumanosRESUMO
OBJECTIVE: Genome-wide association studies and preclinical studies demonstrated a role of sortilin in lipid metabolism, inflammation, and vascular calcification-all cardiovascular risk factors. We evaluated the association of serum sortilin levels with the risk of major adverse cerebrovascular and cardiovascular events (MACCE) and the severity of abdominal aortic calcification (AAC). APPROACH AND RESULTS: A cohort of community-dwelling men aged ≥50 years (n=830) was assessed. At baseline, sortilin levels were measured by ELISA, and AAC was assessed on lateral spine scans obtained by dual-energy X-ray absorptiometry. Men aged ≥60 years (n=745) were followed up prospectively for the incidence of MACCE. During the median follow-up of 7.9 years, 76 MACCE occurred. The unadjusted incidence of MACCE across increasing sortilin quartiles was 8.0, 7.4, 19.8, and 20.3 per 1000 person-years. In multivariate-adjusted analysis, sortilin associated with increased risk of MACCE (hazard ratio, 1.70 per SD; 95% confidence interval, 1.30-2.20; P<0.001). The third and fourth quartiles associated with 3.42-fold (95% confidence interval, 1.61-7.25; P<0.005) and 3.82-fold (95% confidence interval, 1.77-8.26; P<0.001) higher risk of MACCE compared with the first quartile. High sortilin also predicted MACCE independent of traditional Framingham risk factors. Higher sortilin associated with higher odds of severe AAC (score>5) after adjustment for confounders (odds ratio, 1.43 per SD; 95% confidence interval, 1.10-1.85; P<0.01). The highest sortilin quartile associated with 2-fold higher odds of severe AAC (versus 3 lower quartiles combined). After adjustment for low-density lipoprotein cholesterol, the odds of severe AAC remained significant. CONCLUSIONS: In older men, higher serum sortilin levels associated with higher MACCE risk and severe AAC independently of relevant confounders, including C-reactive protein and low-density lipoprotein cholesterol. This finding, however, needs to be validated in other cohorts.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular/sangue , Aorta Abdominal , Doenças da Aorta/sangue , Transtornos Cerebrovasculares/sangue , Cardiopatias/sangue , Calcificação Vascular/sangue , Absorciometria de Fóton , Idoso , Idoso de 80 Anos ou mais , Aorta Abdominal/diagnóstico por imagem , Doenças da Aorta/diagnóstico por imagem , Doenças da Aorta/epidemiologia , Biomarcadores/sangue , Proteína C-Reativa/análise , Transtornos Cerebrovasculares/diagnóstico , Transtornos Cerebrovasculares/epidemiologia , Distribuição de Qui-Quadrado , LDL-Colesterol/sangue , Ensaio de Imunoadsorção Enzimática , França/epidemiologia , Cardiopatias/diagnóstico , Cardiopatias/epidemiologia , Humanos , Incidência , Estimativa de Kaplan-Meier , Modelos Lineares , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Razão de Chances , Prognóstico , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Fatores Sexuais , Fatores de Tempo , Regulação para Cima , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/epidemiologiaRESUMO
The presence of cardiovascular calcification significantly predicts patients' morbidity and mortality. Calcific mineral deposition within the soft cardiovascular tissues disrupts the normal biomechanical function of these tissues, leading to complications such as heart failure, myocardial infarction, and stroke. The realization that calcification results from active cellular processes offers hope that therapeutic intervention may prevent or reverse the disease. To this point, however, no clinically viable therapies have emerged. This may be due to the lack of certainty that remains in the mechanisms by which mineral is deposited in cardiovascular tissues. Gaining new insight into this process requires a multidisciplinary approach. The pathological changes in cell phenotype that lead to the physicochemical deposition of mineral and the resultant effects on tissue biomechanics must all be considered when designing strategies to treat cardiovascular calcification. In this review, we overview the current cardiovascular calcification paradigm and discuss emerging techniques that are providing new insight into the mechanisms of ectopic calcification.
Assuntos
Calcinose/metabolismo , Doenças Cardiovasculares/metabolismo , Doença da Artéria Coronariana/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Valva Aórtica/fisiopatologia , Doenças Cardiovasculares/patologia , Colágeno/metabolismo , Doença da Artéria Coronariana/patologia , Humanos , Inflamação/metabolismo , Modelos Biológicos , Placa Aterosclerótica/patologiaRESUMO
Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the aggregation of calcifying extracellular vesicles, and the formation of microcalcifications and ultimately large calcification areas. We also show that calcification morphology and the plaque's collagen content-two determinants of atherosclerotic plaque stability-are interlinked.
Assuntos
Aterosclerose/metabolismo , Vesículas Extracelulares/fisiologia , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Cálcio/metabolismo , Artérias Carótidas/patologia , Colágeno/metabolismo , Doença das Coronárias/metabolismo , Matriz Extracelular , Humanos , Camundongos , Camundongos KnockoutRESUMO
OBJECTIVE: Collagen accumulation and calcification are major determinants of atherosclerotic plaque stability. Extracellular vesicle (EV)-derived microcalcifications in the collagen-poor fibrous cap may promote plaque rupture. In this study, we hypothesize that the collagen receptor discoidin domain receptor-1 (DDR-1) regulates collagen deposition and release of calcifying EVs by vascular smooth muscle cells (SMCs) through the transforming growth factor-ß (TGF-ß) pathway. APPROACH AND RESULTS: SMCs from the carotid arteries of DDR-1(-/-) mice and wild-type littermates (n=5-10 per group) were cultured in normal or calcifying media. At days 14 and 21, SMCs were harvested and EVs isolated for analysis. Compared with wild-type, DDR-1(-/-) SMCs exhibited a 4-fold increase in EV release (P<0.001) with concomitantly elevated alkaline phosphatase activity (P<0.0001) as a hallmark of EV calcifying potential. The DDR-1(-/-) phenotype was characterized by increased mineralization (Alizarin Red S and Osteosense, P<0.001 and P=0.002, respectively) and amorphous collagen deposition (P<0.001). We further identified a novel link between DDR-1 and the TGF-ß pathway previously implicated in both fibrotic and calcific responses. An increase in TGF-ß1 release by DDR-1(-/-) SMCs in calcifying media (P<0.001) stimulated p38 phosphorylation (P=0.02) and suppressed activation of Smad3. Inhibition of either TGF-ß receptor-I or phospho-p38 reversed the fibrocalcific DDR-1(-/-) phenotype, corroborating a causal relationship between DDR-1 and TGF-ß in EV-mediated vascular calcification. CONCLUSIONS: DDR-1 interacts with the TGF-ß pathway to restrict calcifying EV-mediated mineralization and fibrosis by SMCs. We therefore establish a novel mechanism of cell-matrix homeostasis in atherosclerotic plaque formation.
Assuntos
Aterosclerose/metabolismo , Colágeno/metabolismo , Vesículas Extracelulares/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Calcificação Vascular/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Receptor com Domínio Discoidina 1 , Modelos Animais de Doenças , Feminino , Fibrose , Predisposição Genética para Doença , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Osteogênese , Fenótipo , Fosforilação , Placa Aterosclerótica , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/genética , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismo , Fatores de Tempo , Calcificação Vascular/genética , Calcificação Vascular/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
PURPOSE: Calcific aortic valve disease (CAVD) is the most prevalent valve disease in the Western world. Recent difficulty in translating experimental results on statins to beneficial clinical effects warrants the need for understanding the role of valvular interstitial cells (VICs) in CAVD. In two-dimensional culture conditions, VICs undergo spontaneous activation similar to pathological differentiation, which intrinsically limits the use of in vitro models to study CAVD. Here, we hypothesized that a three-dimensional (3D) culture system based on naturally derived extracellular matrix polymers, mimicking the microenvironment of native valve tissue, could serve as a physiologically relevant platform to study the osteogenic differentiation of VICs. PRINCIPAL RESULTS: Aortic VICs loaded into 3D hydrogel constructs maintained a quiescent phenotype, similar to healthy human valves. In contrast, osteogenic environment induced an initial myofibroblast differentiation (hallmarked by increased alpha smooth muscle actin [α-SMA] expression), followed by an osteoblastic differentiation, characterized by elevated Runx2 expression, and subsequent calcific nodule formation recapitulating CAVD conditions. Silencing of α-SMA under osteogenic conditions diminished VIC osteoblast-like differentiation and calcification, indicating that a VIC myofibroblast-like phenotype may precede osteogenic differentiation in CAVD. MAJOR CONCLUSIONS: Using a 3D hydrogel model, we simulated events that occur during early CAVD in vivo and provided a platform to investigate mechanisms of CAVD. Differentiation of valvular interstitial cells to myofibroblasts was a key mechanistic step in the process of early mineralization. This novel approach can provide important insight into valve pathobiology and serve as a promising tool for drug screening.
Assuntos
Estenose da Valva Aórtica/etiologia , Estenose da Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/etiologia , Calcinose/metabolismo , Actinas/genética , Animais , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Apoptose , Biomarcadores , Calcinose/genética , Calcinose/patologia , Técnicas de Cultura de Células , Ciclo Celular , Diferenciação Celular , Sobrevivência Celular , Imunofluorescência , Inativação Gênica , Humanos , Hidrogéis , Técnicas In Vitro , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Fenótipo , SuínosRESUMO
Epidemiological evidence conclusively demonstrates that calcium burden is a significant predictor of cardiovascular morbidity and mortality; however, the underlying mechanisms remain largely unknown. These observations have challenged the previously held notion that calcification serves to stabilize the atherosclerotic plaque. Recent studies have shown that microcalcifications that form within the fibrous cap of the plaques lead to the accrual of plaque-destabilizing mechanical stress. Given the association between calcification morphology and cardiovascular outcomes, it is important to understand the mechanisms leading to calcific mineral deposition and growth from the earliest stages. We highlight the open questions in the field of cardiovascular calcification and include a review of the proposed mechanisms involved in extracellular vesicle-mediated mineral deposition.
Assuntos
Calcinose/patologia , Doenças Cardiovasculares/patologia , Placa Aterosclerótica/patologia , Animais , Calcinose/etiologia , Calcinose/metabolismo , Doenças Cardiovasculares/metabolismo , Humanos , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/metabolismoRESUMO
Vascular calcification is a major contributor to the progression of cardiovascular disease, one of the leading causes of death in industrialized countries. New evidence on the mechanisms of mineralization identified calcification-competent extracellular vesicles (EVs) derived from smooth muscle cells, valvular interstitial cells and macrophages as the mediators of calcification in diseased heart valves and atherosclerotic plaques. However, the regulation of EV release and the mechanisms of interaction between EVs and the extracellular matrix leading to the formation of destabilizing microcalcifications remain unclear. This review focuses on current limits in our understanding of EVs in cardiovascular disease and opens up new perspectives on calcific EV biogenesis, release and functions within and beyond vascular calcification. We propose that, unlike bone-derived matrix vesicles, a large population of EVs implicated in cardiovascular calcification are of exosomal origin. Moreover, the milieu-dependent loading of EVs with microRNA and calcification inhibitors fetuin-A and matrix Gla protein suggests a novel role for EVs in intercellular communication, adding a new mechanism to the pathogenesis of vascular mineralization. Similarly, the cell type-dependent enrichment of annexins 2, 5 or 6 in calcifying EVs posits one of several emerging factors implicated in the regulation of EV release and calcifying potential. This review aims to emphasize the role of EVs as essential mediators of calcification, a major determinant of cardiovascular mortality. Based on recent findings, we pinpoint potential targets for novel therapies to slow down the progression and promote the stability of atherosclerotic plaques.
Assuntos
Calcinose/metabolismo , Vesículas Extracelulares/metabolismo , Calcificação Vascular/metabolismo , Animais , Calcinose/patologia , Vesículas Extracelulares/patologia , Vesículas Extracelulares/ultraestrutura , Humanos , MicroRNAs/metabolismo , Calcificação Vascular/patologiaRESUMO
Cardiovascular calcification is a prominent feature of chronic inflammatory disorders-such as chronic kidney disease, type 2 diabetes mellitus, and atherosclerosis-that associate with significant morbidity and mortality. The concept that similar pathways control both bone remodeling and vascular calcification is widely accepted, but the precise mechanisms of calcification remain largely unknown. The central role of microRNAs (miRNA) as fine-tune regulators in the cardiovascular system and bone biology has gained acceptance and has raised the possibility for novel therapeutic targets. Additionally, circulating miRNAs have been proposed as biomarkers for a wide range of cardiovascular diseases, but knowledge of miRNA biology in cardiovascular calcification is very limited. This review focuses on the role of miRNAs in cardiovascular disease, with emphasis on osteogenic processes. Herein, we discuss the current understanding of miRNAs in cardiovascular calcification. Furthermore, we identify a set of miRNAs common to diseases associated with cardiovascular calcification (chronic kidney disease, type 2 diabetes mellitus, and atherosclerosis), and we hypothesize that these miRNAs may provide a molecular signature for calcification. Finally, we discuss this novel hypothesis with emphasis on known biological and pathological osteogenic processes (eg, osteogenic differentiation, release of calcifying matrix vesicles). The aim of this review is to provide an organized discussion of the known links between miRNA and calcification that provide emerging concepts for future studies on miRNA biology in cardiovascular calcification, which will be critical for developing new therapeutic strategies.
Assuntos
Calcinose/genética , Calcinose/terapia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Terapia Genética/métodos , MicroRNAs/fisiologia , Animais , Calcinose/patologia , Doenças Cardiovasculares/patologia , Sistemas de Liberação de Medicamentos , HumanosRESUMO
PURPOSE OF REVIEW: Atherosclerotic plaque rupture and subsequent acute events, such as myocardial infarction and stroke, contribute to the majority of cardiovascular-related deaths. Calcification has emerged as a significant predictor of cardiovascular morbidity and mortality, challenging previously held notions that calcifications stabilize atherosclerotic plaques. In this review, we address this discrepancy through recent findings that not all calcifications are equivalent in determining plaque stability. RECENT FINDINGS: The risk associated with calcification is inversely associated with calcification density. As opposed to large calcifications that potentially stabilize the plaque, biomechanical modeling indicates that small microcalcifications within the plaque fibrous cap can lead to sufficient stress accumulation to cause plaque rupture. Microcalcifications appear to derive from matrix vesicles enriched in calcium-binding proteins that are released by cells within the plaque. Clinical detection of microcalcifications has been hampered by the lack of imaging resolution required for in-vivo visualization; however, recent studies have demonstrated promising new techniques to predict the presence of microcalcifications. SUMMARY: Microcalcifications play a major role in destabilizing atherosclerotic plaques. The identification of critical characteristics that lead to instability along with new imaging modalities to detect their presence in vivo may allow early identification and prevention of acute cardiovascular events.