Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Resusc Plus ; 19: 100681, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38966232

RESUMO

Objectives: The cognitive outcome of CPR is poor. This study aims to evaluate if enhancing blood flow to the brain and oxygen dissociation from the hemoglobin improve cerebral O2 transport during CPR in cardiac arrest swine. Methods: Standard swine-CPR model of induced VF and recovery was treated with an auto-transfusion tourniquet (A-TT®; HemaShock® (HS) Oneg HaKarmel Ltd. Israel) and ventilation with a novel mixture of 30% Oxygen, 5% CO2, and 65% Argon (COXAR™). Five swine received the study treatment and 5 controls standard therapy. Animals were anesthetized, ventilated, and instrumented for blood draws and pressure measurements. Five minutes of no-CPR arrest were followed by 10 min of mechanical CPR with and without COXAR-HS™ enhancement followed by defibrillation and 45 min post ROSC follow-up. Results: All 5 COXAR-HS™ animals were resuscitated successfully as opposed to 3 of the control animals. Systolic (p < 0.05), and diastolic (p < 0.01) blood pressures, and coronary (p < 0.001) and cerebral (p < 0.05) perfusion pressures were higher in the COXAR-HS™ group after ROSC, as well as cerebral flow and O2 provided to the brain (p < 0.05). Blood pressure maintenance after ROSC required much higher doses of norepinephrine in the 3 resuscitated control animals vs. the 5 COXAR-HS™ animals (p < 0.05). jugular vein PO2 and SO2 exceeded 50 mmHg and 50%, respectively with COXAR-HS™. Conclusions: In this pilot experimental study, COXAR-HS™ was associated with higher diastolic blood pressure and coronary perfusion pressure with lower need of vasopressors after ROSC without significant differences prior to ROSC. The higher PjvO2 and SjvO2 suggest enhanced O2 provision to the brain mitochondria, while limb compression by the HS counteracts the vasodilatory effect of the CO2. Further studies are needed to explore and validate the COXAR-HS™ effects on actual post-ROSC brain functionality.

3.
J Am Heart Assoc ; 13(16): e035617, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39158568

RESUMO

BACKGROUND: Brain injury is one of the most serious complications after cardiac arrest (CA). To prevent this phenomenon, rapid cooling with total liquid ventilation (TLV) has been proposed in small animal models of CA (rabbits and piglets). Here, we aimed to determine whether hypothermic TLV can also offer neuroprotection and mitigate cerebral inflammatory response in large animals. METHODS AND RESULTS: Anesthetized pigs were subjected to 14 minutes of ventricular fibrillation followed by cardiopulmonary resuscitation. After return of spontaneous circulation, animals were randomly subjected to normothermia (control group, n=8) or ultrafast cooling with TLV (TLV group, n=8). In the latter group, TLV was initiated within a window of 15 minutes after return of spontaneous circulation and allowed to reduce tympanic, esophageal, and bladder temperature to the 32 to 34 °C range within 30 minutes. After 45 minutes of TLV, gas ventilation was resumed, and hypothermia was maintained externally until 3 hours after CA, before rewarming using heat pads (0.5 °C-1 °C/h). After an additional period of progressive rewarming for 3 hours, animals were euthanized for brain withdrawal and histological analysis. At the end of the follow-up (ie, 6 hours after CA), histology showed reduced brain injury as witnessed by the reduced number of Fluroro-Jade C-positive cerebral degenerating neurons in TLV versus control. IL (interleukin)-1ra and IL-8 levels were also significantly reduced in the cerebrospinal fluid in TLV versus control along with cerebral infiltration by CD3+ cells. Conversely, circulating levels of cytokines were not different among groups, suggesting a discrepancy between local and systemic inflammatory levels. CONCLUSIONS: Ultrafast cooling with TLV mitigates neuroinflammation and attenuates acute brain lesions in the early phase following resuscitation in large animals subjected to CA.


Assuntos
Modelos Animais de Doenças , Parada Cardíaca , Hipotermia Induzida , Ventilação Líquida , Animais , Hipotermia Induzida/métodos , Parada Cardíaca/terapia , Ventilação Líquida/métodos , Suínos , Fatores de Tempo , Reanimação Cardiopulmonar/métodos , Encéfalo/patologia , Encéfalo/metabolismo , Neuroproteção , Citocinas/metabolismo , Citocinas/sangue , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/sangue
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa