Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 42(6): 1212-1228, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36971460

RESUMO

While chemicals are vital to modern society through materials, agriculture, textiles, new technology, medicines, and consumer goods, their use is not without risks. Unfortunately, our resources seem inadequate to address the breadth of chemical challenges to the environment and human health. Therefore, it is important we use our intelligence and knowledge wisely to prepare for what lies ahead. The present study used a Delphi-style approach to horizon-scan future chemical threats that need to be considered in the setting of chemicals and environmental policy, which involved a multidisciplinary, multisectoral, and multinational panel of 25 scientists and practitioners (mainly from the United Kingdom, Europe, and other industrialized nations) in a three-stage process. Fifteen issues were shortlisted (from a nominated list of 48), considered by the panel to hold global relevance. The issues span from the need for new chemical manufacturing (including transitioning to non-fossil-fuel feedstocks); challenges from novel materials, food imports, landfills, and tire wear; and opportunities from artificial intelligence, greater data transparency, and the weight-of-evidence approach. The 15 issues can be divided into three classes: new perspectives on historic but insufficiently appreciated chemicals/issues, new or relatively new products and their associated industries, and thinking through approaches we can use to meet these challenges. Chemicals are one threat among many that influence the environment and human health, and interlinkages with wider issues such as climate change and how we mitigate these were clear in this exercise. The horizon scan highlights the value of thinking broadly and consulting widely, considering systems approaches to ensure that interventions appreciate synergies and avoid harmful trade-offs in other areas. We recommend further collaboration between researchers, industry, regulators, and policymakers to perform horizon scanning to inform policymaking, to develop our ability to meet these challenges, and especially to extend the approach to consider also concerns from countries with developing economies. Environ Toxicol Chem 2023;42:1212-1228. © 2023 Crown copyright and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article is published with the permission of the Controller of HMSO and the King's Printer for Scotland.


Assuntos
Inteligência Artificial , Poluição Ambiental , Humanos , Ecotoxicologia , Agricultura , Europa (Continente)
2.
Water Res ; 220: 118641, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35635919

RESUMO

Semi-quantitative GC-MS and LC-MS measurements of organic chemicals in groundwater and surface waters were used to assess the overall magnitude and contribution of the most important substances to calculated mixture hazard. Here we use GC-MS and LC-MS measurements taken from two separate national monitoring programs for groundwater and surface water in England, in combination with chronic species sensitivity distribution (SSD) HC50 values published by Posthuma et al. (2019, Environ. Toxicol. Chem, 38, 905-917) to calculate individual substance hazard quotients and mixture effects using a concentration addition approach. The mixture analysis indicated that, as anticipated, there was an increased hazard from the presence of a cocktail of substances at sites compared to the hazard for any single chemical. The magnitude of the difference between the hazard attributed to the most important chemical and the overall mixture effect, however, was not large. Thus, the most toxic chemical contributed ≥ 20% of the calculated mixture effect in >99% of all measured groundwater and surface water samples. On the basis of this analysis, a 5 fold assessment factor placed on the risk identified for any single chemical would offer a high degree of in cases where implementation of a full mixture analysis was not possible. This finding is consistent with previous work that has assessed chemical mixture effects within field monitoring programs and as such provides essential underpinning for future policy and management decisions on how to effectively and proportionately manage mixture risks.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Compostos Orgânicos/análise , Água/análise , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 835: 155101, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35461935

RESUMO

The Environment Agency has been using Gas Chromatography-Mass Spectrometry (GC-MS) and Accurate-mass Quadrupole Time-of-Flight (Q-TOF) / Liquid Chromatography-Mass Spectrometry (LC-MS) target screen analysis to semi-quantitatively measure organic substances in groundwater and surface water since 2009 for GC-MS and 2014 for LC-MS. Here we use this data to generate a worst-case "risk" ranking of the detected substances. Three sets of hazard values relating to effects on aquatic organisms, namely Water Framework Directive EQSs, NORMAN Network PNECs (hereafter NORMAN PNEC) and chronic Species Sensitivity Distribution (SSD) HC50s from Posthuma et al., (2019) were used for the assessment. These hazard values were compared to the highest measured concentration for each chemical to generate a worst-case hazard quotient (HQ). Calculated HQs for each metric were ranked, averaged and multiplied by rank for detection frequency to generate an overall ordering based on HQ and occurrence. This worst-case approach was then used to generate ranking lists for GC-MS and LC-MS detected substances in groundwater and surface water. Pesticides in the top 30 overall ranked list included more legacy pesticides in groundwater and more current use actives in surface water. Specific uses were linked to some high rankings (e.g. rotenone for invasive species control). A number of industrial and plastics associated chemicals were ranked highly in the groundwater dataset, while more personal care products and pharmaceuticals were highly ranked in surface waters. Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) compounds were commonly highly ranked in both environmental compartments. The approach confirmed high rankings for some substance (e.g. selected pesticides) from previous prioritization exercises, but also identified novel substance for consideration (e.g. some PFAS compounds and pharmaceuticals). Overall our approach provided a simple approach using readily accessible data to identify substances for further and more detailed assessment.


Assuntos
Fluorocarbonos , Água Subterrânea , Praguicidas , Poluentes Químicos da Água , Monitoramento Ambiental , Fluorocarbonos/análise , Compostos Orgânicos , Praguicidas/análise , Preparações Farmacêuticas , Água/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa