Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 412(9): 2081-2088, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31332469

RESUMO

Filamentous fungi are well-established production hosts that feature a strong interconnection between morphology, physiology, and productivity. For penicillin production in Penicillium chrysogenum, industrial processes frequently favor a pellet morphology comprising compact hyphal agglomerates. Inherently these tightly packed entanglements lead to inactive, degrading sections within the pellet's core because of limitations. Optimal process design requires detailed knowledge of the nature of the limitations and localization of productive zones in the biomass, which is generally obtainable through modeling and complex analytical methods such as oxygen microelectrode and histological investigations. Methods that combine physiological and morphological insight are crucial yet scarce for filamentous fungi. In this study, we used time-of-flight secondary ion mass spectrometry in combination with oxygen and glucose tracer substrates, requiring little effort for sample preparation and measurement. Our method is capable of analyzing oxygen and substrate uptake in various morphological structures by the use of 18O as a tracer. In parallel, we can assess productive biomass regions through identification of penicillin mass fragments to simultaneously study oxygen diffusion, substrate incorporation, and productive biomass sections.


Assuntos
Penicillium chrysogenum/metabolismo , Biomassa , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Glucose/metabolismo , Oxigênio/metabolismo , Penicilinas/metabolismo , Penicillium chrysogenum/crescimento & desenvolvimento , Espectrometria de Massa de Íon Secundário
2.
Anal Chem ; 89(4): 2377-2382, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28192950

RESUMO

A sputter beam, consisting of large O2 clusters, was used to record depth profiles of alkali metal ions (Me+) within thin SiO2 layers. The O2 gas cluster ion beam (O2-GCIB) exhibits an erosion rate comparable to the frequently used O2+ projectiles. However, because of its high sputter yield the necessary beam current is considerably lower (factor 50), resulting in a decreased amount of excess charges at the SiO2 surface. Hence, a reduced electric field is obtained within the remaining dielectric layer. This drastically mitigates the Me+ migration artifact, commonly observed in depth profiles of various dielectric materials, if analyzed by time-of-flight secondary ion mass spectrometry (ToF-SIMS) in dual beam mode. It is shown, that the application of O2-GCIB results in a negligible residual ion migration for Na+ and K+. This enables artifact-free depth profiling with high sensitivity and low operational effort. Furthermore, insight into the migration behavior of Me+ during O2+ sputtering is given by switching the sputter beam from O2+ to O2 clusters and vice versa. K+ is found to be transported through the SiO2 layer only within the proceeding sputter front. For Na+ a steadily increasing fraction is observed, which migrates through the unaffected SiO2 layer toward the adjacent Si/SiO2 interface.

3.
Acta Chim Slov ; 63(3): 509-18, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27640378

RESUMO

The oxygen stoichiometry of mixed conducting oxides depends on the oxygen chemical potential and thus on the oxygen partial pressure in the gas phase. Also voltages may change the local oxygen stoichiometry and the amount to which such changes take place is quantified by the chemical capacitance of the sample. Impedance spectroscopy can be used to probe this chemical capacitance. Impedance measurements on different oxides ((La,Sr)FeO3-δ = LSF, Sr(Ti,Fe)O3-δ = STF, and Pb(Zr,Ti)O3 = PZT) are presented, and demonstrate how the chemical capacitance may affect impedance spectra in different types of electrochemical cells. A quantitative analysis of the spectra is based on generalized equivalent circuits developed for mixed conducting oxides by J. Jamnik and J. Maier. It is discussed how defect chemical information can be deduced from the chemical capacitance.

4.
Anal Chem ; 87(22): 11375-82, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26491812

RESUMO

For many tasks in failure and damage analysis of surfaces deteriorated in heavy tribological contact, the detailed characterization of used lubricants and their additives is essential. The objective of the presented work is to establish accessibility of tribostressed surfaces for direct characterization via modified atmospheric pressure-matrix assisted laser desorption/ionization-mass spectrometry (m-AP-MALDI-MS). Special target holders were constructed to allow target samples of differing shape and form to fit into the desorption/ionization chamber. The best results of desorption and ionization on different target materials and varying roughnesses were achieved on smooth surfaces with low matrix/substrate interaction. M-AP-MALDI characterization of tribologically stressed steel surfaces after pin-on-disc sliding wear tests (SRV-tribotests) yielded positive identification of used friction modifier additives. Further structure elucidation by electrospray ionization mass spectrometry (ESI-MS) and measurements of worn surfaces by time-of-flight-secondary ion mass spectrometry (TOF-SIMS) accompanied findings about additive behavior and deterioration during tribological contact. Using m-AP-MALDI for direct offline examinations of worn surfaces may set up a quick method for determination of additives used for lubrication and general characterization of a tribological system.

5.
Phys Chem Chem Phys ; 17(12): 7659-69, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25594681

RESUMO

In this study, the contribution of grain boundaries to the oxygen reduction and diffusion kinetics of La0.8Sr0.2MnO3 (LSM) thin films is investigated. Polycrystalline LSM thin films with columnar grains of different grain sizes as well as epitaxial thin films were prepared by pulsed laser deposition. (18)O tracer exchange experiments were performed at temperatures from 570 °C to 810 °C and subsequently analyzed by secondary ion mass spectrometry (SIMS). The isotope concentration depth profiles of polycrystalline films clearly indicate contributions from diffusion and surface exchange in grains as well as in grain boundaries. Measured depth profiles were analyzed by finite element modeling and revealed the diffusion coefficients D and oxygen exchange coefficients k of both the grain bulk and grain boundaries. Values obtained for grain boundaries (Dgb and kgb) are almost three orders of magnitude higher than those of the grains (Dg and kg). Hence, grain boundaries may not only facilitate fast oxygen diffusion but also fast oxygen exchange kinetics. Variation of the A-site stoichiometry ((La0.8Sr0.2)0.95MnO3) did not lead to large changes of the kinetic parameters. Properties found for epitaxial layers without grain boundaries (Db and kb) are close to those of the grains in polycrystalline layers.

6.
Solid State Ion ; 273: 25-29, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-27570332

RESUMO

Thermally and electrochemically driven 18O tracer exchange experiments in H2/H218O atmosphere were performed on SrTi0.7Fe0.3O3 - Î´ and Ce0.8Gd0.2O2 - Î´ thin films on single crystalline YSZ substrates. Noble metal current collectors were deposited on both films and electrochemically polarized during the exchange experiment. The resulting tracer distribution was analyzed by spatially resolved secondary ion mass spectrometry. Increased tracer fraction near the current collectors was found under cathodic polarization and decreased tracer fraction under anodic polarization. High cathodic bias leads to enhanced n-type electronic conductivity, which increases the extent of the electrochemically active zone.

7.
Phys Chem Chem Phys ; 16(6): 2715-26, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24390268

RESUMO

Cation diffusion was investigated in La0.6Sr0.4CoO3-δ (LSC) thin films on (100) yttria stabilized zirconia in the temperature range 625-800 °C. Isotopic ((86)Sr) and elemental tracers (Fe, Sm) were used to establish diffusion profiles of the cations in bi- and multi-layered thin films. The profiles were analyzed by time of flight-secondary ion mass spectrometry (ToF-SIMS). Grain and grain boundary diffusion coefficients of the cations were determined for LSC thin films with columnar grains - diffusion along grain boundaries is shown to be about three orders of magnitude faster than in grains. This could be verified for thin films with different grain size. A- and B-site cations showed very similar temperature dependencies with activation energies of ∼3.5 eV for bulk and ∼4.1 eV for grain boundary diffusion. The importance of cation diffusivities for surface segregation of Sr and thus for a major degradation mechanism of LSC cathodes in solid oxide fuel cells is discussed.

8.
Solid State Ion ; 256: 38-44, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27570330

RESUMO

The oxygen exchange and diffusion properties of La0.6Sr0.4CoO3 - Î´ thin films on yttria stabilized zirconia were analyzed by impedance spectroscopy and 18O tracer experiments. The investigations were performed on the same thin film samples and at the same temperature (400 °C) in order to get complementary information by the two methods. Electrochemical impedance spectroscopy can reveal resistive and capacitive contributions of such systems, but an exact interpretation of the spectra of complex oxide electrodes is often difficult from impedance data alone. It is shown that additional isotope exchange depth profiling can significantly help interpreting impedance spectra by giving reliable information on the individual contribution and exact location of resistances (surface, electrode bulk, interface). The measurements also allowed quantitative comparison of electrode polarization resistances obtained by different methods.

9.
Appl Surf Sci ; 289(100): 407-416, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24748701

RESUMO

A novel operation mode for time of flight-secondary ion mass spectrometry (ToF-SIMS) is described for a TOF.SIMS 5 instrument with a Bi-ion gun. It features sub 100 nm lateral resolution, adjustable primary ion currents and the possibility to measure with high lateral resolution as well as high mass resolution. The adjustment and performance of the novel operation mode are described and compared to established ToF-SIMS operation modes. Several examples of application featuring novel scientific results show the capabilities of the operation mode in terms of lateral resolution, accuracy of isotope analysis of oxygen, and combination of high lateral and mass resolution. The relationship between high lateral resolution and operation of SIMS in static mode is discussed.

10.
Chemistry ; 19(1): 288-93, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23180598

RESUMO

Solute properties are known to be strongly influenced by solvent molecules due to solvation. This is due to mutual interaction as both the properties of the solute and of the solvent strongly depend on each other. The present paper is based on the idea that ionic liquids are cations solvated by anions and anions solvated by cations. To show this (in this system strongly pronounced) interaction the long time established donor-acceptor concept for solvents and ions in solution by Viktor Gutmann is extended to ionic liquids. A number of solvent parameters, such as the Kamlet-Abboud-Taft and the Dimroth-Reichardt E(T) scale for ionic liquids neglect this mutual influence, which, however, seems to be in fact necessary to get a proper description of ionic liquid properties. It is shown how strong such parameters vary when the influence of the counter ion is taken into account. Furthermore, acceptor and donor numbers for ionic liquids are presented.

11.
Anal Bioanal Chem ; 405(22): 7161-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23460300

RESUMO

In 2D and 3D time-of-flight secondary ion mass spectrometric (ToF-SIMS) analysis, accentuated structures on the sample surface induce distorted element distributions in the measurement. The origin of this effect is the 45° incidence angle of the analysis beam, recording planar images with distortion of the sample surface. For the generation of correct element distributions, these artifacts associated with the sample surface need to be eliminated by measuring the sample surface topography and applying suitable algorithms. For this purpose, the next generation of ToF-SIMS instruments will feature a scanning probe microscope directly implemented in the sample chamber which allows the performance of topography measurements in situ. This work presents the combination of 2D and 3D ToF-SIMS analysis with topographic measurements by ex situ techniques such as atomic force microscopy (AFM), confocal microscopy (CM), and digital holographic microscopy (DHM). The concept of the combination of topographic and ToF-SIMS measurements in a single representation was applied to organic and inorganic samples featuring surface structures in the nanometer and micrometer ranges. The correct representation of planar and distorted ToF-SIMS images was achieved by the combination of topographic data with images of 2D as well as 3D ToF-SIMS measurements, using either AFM, CM, or DHM for the recording of topographic data.

12.
Phys Chem Chem Phys ; 15(4): 1097-107, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23223456

RESUMO

Thin YSZ films were prepared on magnesia, sapphire and strontium titanate (STO) single crystals using pulsed laser deposition and, for comparison, by a sol-gel method on STO. The bulk and interfacial mass and charge transport properties of these films were investigated by complementary impedance spectroscopy and tracer diffusion measurements. In this context, a novel two-step tracer diffusion experiment is introduced. For YSZ films on sapphire and magnesia, grain bulk conductivities similar to those of polycrystalline samples were measured in most cases. Strongly blocking grain boundaries could be identified by impedance measurements. The films on sapphire and magnesia also exhibited good agreement between effective transport properties of impedance and tracer measurements. YSZ layers on strontium titanate single crystals, on the other hand, showed a strongly increased effective conductivity in impedance studies. However, in tracer diffusion experiments this could be unambiguously attributed to conduction in the substrate while the diffusion coefficient of YSZ on STO was comparable to that of YSZ films on other substrates. Moreover, the tracer diffusion experiments did not indicate any significant increase of oxide ion mobility on a free YSZ surface compared to a Pt|YSZ interface.

13.
Anal Bioanal Chem ; 400(3): 659-63, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21360033

RESUMO

A study of grain boundary diffusion of oxygen in hot-rolled steel sheets is carried out by means of time-of-flight secondary-ion-mass-spectrometry (ToF-SIMS). This involves polishing of the sample surface prior to the oxygen exposure. A nickel layer deposited after exposure ensures a homogeneous extraction field for ToF-SIMS measurements at the Ni-steel interface. The sample is bevelled at an angle of 11.5° to spread up the diffusion pathway by a factor of 5. The oxygen distribution is then acquired via ToF-SIMS in imaging mode from which diffusion parameters are calculated according to the Whipple-Le Claire's approach.

14.
Anal Bioanal Chem ; 400(3): 649-57, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21331494

RESUMO

The action of Na(+) incorporation into thin insulating films and transport therein under influence of a bias voltage and temperature (BT stress) is the subject of this work. Deposited onto highly n-doped Si wafers, the insulators get BT stressed and subsequently investigated by means of time-of-flight-secondary ion mass spectrometry (ToF-SIMS). A thin PMMA film, spin-coated onto the insulator, serves as host matrix for a defined amount of Na(+), provided via sodium triflate. Combining BT stress and ToF-SIMS depth profiling enables the unambiguous detection of Na(+), incorporated into the insulating material. The insulators of interest vary in their nitride content: SiO(2), SiO(x)N(y), and Si(3)N(4). For SiO(2), it is shown that once a threshold BT stress is exceeded, Na(+) gets quantitatively incorporated from PMMA into the underlying insulator, finally accumulating at the SiO(2)/Si interface. A quantitative assessment by combination of Butler-Volmer kinetics with hopping dynamics reveals activation energies of E(a) = 1.55 - 2.04 eV for Na(+) transport in SiO(2) with varying thickness. On the other hand, SiO(x)N(y) and Si(3)N(4) films show a different Na(+) incorporation characteristic in this type of experiment, which can be explained by the higher coordination of nitrogen and hence the reduced Na(+) permeability within these insulators.

15.
Electrochim Acta ; 56(27): 9727-9740, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22210951

RESUMO

The oxygen exchange kinetics of platinum on yttria-stabilized zirconia (YSZ) was investigated by means of geometrically well-defined Pt microelectrodes. By variation of electrode size and temperature it was possible to separate two temperature regimes with different geometry dependencies of the polarization resistance. At higher temperatures (550-700 °C) an elementary step located close to the three phase boundary (TPB) with an activation energy of ∼1.6 eV was identified as rate limiting. At lower temperatures (300-400 °C) the rate limiting elementary step is related to the electrode area and exhibited a very low activation energy in the order of 0.2 eV. From these observations two parallel pathways for electrochemical oxygen exchange are concluded.The nature of these two elementary steps is discussed in terms of equivalent circuits. Two combinations of parallel rate limiting reaction steps are found to explain the observed geometry dependencies: (i) Diffusion through an impurity phase at the TPB in parallel to diffusion of oxygen through platinum - most likely along Pt grain boundaries - as area-related process. (ii) Co-limitation of oxygen diffusion along the Pt|YSZ interface and charge transfer at the interface with a short decay length of the corresponding transmission line (as TPB-related process) in parallel to oxygen diffusion through platinum.

16.
Opt Express ; 18(4): 3719-31, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20389382

RESUMO

Digital holographic microscopy (DHM) is an interferometric technique that allows real-time imaging of the entire complex optical wavefront (amplitude and phase) reflected by or transmitted through a sample. To our knowledge, only the quantitative phase is exploited to measure topography, assuming homogeneous material sample and a single reflection on the surface of the sample. In this paper, dual-wavelength DHM measurements are interpreted using a model of reflected wave propagation through a three-interfaces specimen (2 layers deposited on a semi-infinite layer), to measure simultaneously topography, layer thicknesses and refractive indices of micro-structures. We demonstrate this DHM reflectometry technique by comparing DHM and profilometer measurement of home-made SiO(2)/Si targets and Secondary Ion Mass Spectrometry (SIMS) sputter craters on specimen including different multiple layers.


Assuntos
Algoritmos , Holografia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Interferometria/métodos , Fotometria/métodos , Processamento de Sinais Assistido por Computador
17.
Phys Chem Chem Phys ; 12(39): 12734-45, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20737090

RESUMO

In this study the electrochemically active region of oxygen incorporation into yttria stabilized zirconia (YSZ) was visualized by means of (18)O tracer incorporation experiments on dense Pt thin film microelectrodes combined with ToF-SIMS analysis. The localization and the shape of the incorporation zone were found to strongly depend on the polarization of the electrode. In case of lower overpotentials the active zone next to the three phase boundary (TPB) was frame-shaped and located beneath the Pt electrode. Increases in polarization led to an extension of the incorporation zone along the free YSZ surface. Owing to the low temperature of 300-330 °C a profile-broadening caused by diffusion in YSZ could be minimized and quantitatively separated from the measured profiles. The TPB-width (i.e. the decay length of electrochemical activity) was determined to be approximately 1.0-1.3 µm at these temperatures.

18.
Anal Bioanal Chem ; 393(8): 1889-98, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19234854

RESUMO

The investigation and analysis of polymer thin films with Bi(n)(+), n = 1-7 cluster ions has been demonstrated by means of static secondary ion mass spectrometry (SIMS). The highly specific signal enhancement of these primary ions combined with the individual fragmentation pattern of poly(4-vinylphenol) and poly(methyl methacrylate) is the basic principle for a modified approach of data reduction derived from the well-established g-SIMS procedure. Based on mass spectra, which correspond to different cluster ion sizes, not only a clear distinction between the two polymers is feasible but also a further simplification of the data can be demonstrated. It has been successfully proven that characteristic polymer-relevant species can be refined out of the large amount of unspecific and highly fragmented secondary ions, which are usually present in SIMS spectra. Therefore, a more precise and direct interpretation of complex organic fragments becomes feasible, which consequently enables the investigation of even more sophisticated samples.


Assuntos
Polimetil Metacrilato/química , Polivinil/química , Membranas Artificiais , Espectrometria de Massa de Íon Secundário/métodos , Fatores de Tempo
19.
Anal Bioanal Chem ; 390(6): 1537-41, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18026861

RESUMO

Metal-matrix composites are made of materials with different physical and chemical properties. It is possible to change the mechanical, thermal and electrical properties by variation of the mass ratio of the components; therefore, metal-matrix composites have great value for industrial and technological applications. Copper-carbon composites have a good chance to be used as heat sinks for electronic components, which can be explained by their high thermal conductivity, low density and an adjustable coefficient of thermal expansion. On the other hand, the mechanical adhesion of copper and carbon is extremely weak because of their immiscibility and weak chemical interactions. In order to compensate for the low wettability of carbon by copper, a thin molybdenum intermediate layer is used as an adhesion promoter. In this work a time of flight secondary ion mass spectrometry technique was primarily used to detect the carbide formation in the molybdenum and copper layers, depending on different temperature conditions during sputter deposition and annealing afterwards. The CuMo layers were deposited by magnetron sputtering. The adhesion of the samples was determined by a destructive pull-off test. We found that heat treatment mainly modifies the carbide formation in the molybdenum and copper layers.

20.
Nat Commun ; 9(1): 3710, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30213926

RESUMO

Perovskite oxide surfaces catalyze oxygen exchange reactions that are crucial for fuel cells, electrolyzers, and thermochemical fuel synthesis. Here, by bridging the gap between surface analysis with atomic resolution and oxygen exchange kinetics measurements, we demonstrate how the exact surface atomic structure can determine the reactivity for oxygen exchange reactions on a model perovskite oxide. Two precisely controlled surface reconstructions with (4 × 1) and (2 × 5) symmetry on 0.5 wt.% Nb-doped SrTiO3(110) were subjected to isotopically labeled oxygen exchange at 450 °C. The oxygen incorporation rate is three times higher on the (4 × 1) surface phase compared to the (2 × 5). Common models of surface reactivity based on the availability of oxygen vacancies or on the ease of electron transfer cannot account for this difference. We propose a structure-driven oxygen exchange mechanism, relying on the flexibility of the surface coordination polyhedra that transform upon dissociation of oxygen molecules.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa